Skip to main content

Advertisement

Log in

Dynamic expression profiles of MMPs/TIMPs and collagen deposition in mechanically unloaded rat heart: implications for left ventricular assist device support-induced cardiac alterations

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Left ventricular assist devices (LVADs) ameliorate heart failure by reducing preload and afterload. However, extracellular matrix (ECM) deposition after application of LVADs is not clearly defined. The purpose of the present study was to investigate ECM remodeling after mechanical unloading in a rat heart transplant model. Sixty male Lewis rats were subjected to abdominal heterotopic heart transplantation, and the transplanted hearts were pressure- and volume-unloaded. The age- and weight- matched male Lewis rats who had undergone open thoracic surgeries were used as the control. Left ventricle ECM accumulation and the expression/activity of matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) were measured on the third, seventh, and fourteenth days after transplantation/sham surgery. Compared with the control group, myocardial ECM deposition significantly increased on the seventh and fourteenth days after heart transplantation (P < 0.05) and peaked on the 14th day. The gelatinase activity as well as mRNA expression of MMP-2 and MMP-9 significantly increased after transplantation (P < 0.05). Both mRNA and protein levels of TIMP-1 and TIMP-2 significantly increased compared with those of the control group. Mechanical unloading may lead to adverse remodeling of the ECM of the left ventricle. The underlying mechanism may due to the imbalance of the MMP/TIMP system, especially the remarkable upregulation of TIMPs in the pressure and volume unloaded heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akgul A, Skrabal CA, Thompson LO, Loebe M, Lafuente JA, Noon GP, Youker KA (2004) Role of mast cells and their mediators in failing myocardium under mechanical ventricular support. J Heart Lung Transplant 23:709–771

    Article  PubMed  Google Scholar 

  2. Barbone A, Holmes JW, Heerdt PM, The AH, Naka Y, Joshi N, Daines M, Marks AR, Oz MC, Burkhoff D (2001) Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation 104:670–675

    Article  PubMed  CAS  Google Scholar 

  3. Bruckner BA, Stetson SJ, Perez-Verdia A, Youker KA, Radovancevic B, Connelly JH, Koerner MM, Entman ME, Frazier OH, Noon GP, Torre-Amione G (2001) Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant 20:457–464

    Article  PubMed  CAS  Google Scholar 

  4. Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, Cleutjens JP, Gmelig-Meyling FH, de Weger RA (2006) Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transplant 25:1091–1098

    Article  PubMed  Google Scholar 

  5. Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105:1983–1988

    Article  PubMed  CAS  Google Scholar 

  6. Dedja A, Dall’Olmo L, Cadrobbi R, Baldan N, Fante F, Calabrese F, Rigotti P, Ferraresso M, Delriviere L, Cozzi E, Ancona E (2005) Heterotopic cardiac xenotransplantation in rodents: report of a refined technique in a hamster-to-rat model. Microsurgery 25:227–234

    Article  PubMed  Google Scholar 

  7. Delgado DH, Ross HJ, Rao V (2007) The dilemma of a left ventricular assist device explantation: a decision analysis. Can J Cardiol 23:657–661

    Article  PubMed  Google Scholar 

  8. Doenst T, Bugger H, Leippert S, Barleon B, Marme D, Beyersdorf F (2006) Differential gene expression in response to ventricular unloading in rat and human myocardium. Thorac Cardiovasc Surg 54:381–387

    Article  PubMed  CAS  Google Scholar 

  9. Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, Whitehead KJ, Salama ME, Selzman CH, Stehlik J, Clayson SE, Bristow MR, Renlund DG, Li DY (2010) Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol 56:382–391

    Article  PubMed  Google Scholar 

  10. Esmore D, Kaye D, Spratt P, Larbalestier R, Ruygrok P, Tsui S, Meyers D, Fiane AE, Woodard J (2008) A prospective, multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: safety and efficacy. J Heart Lung Transplant 27:579–588

    Article  PubMed  Google Scholar 

  11. Hasegawa T, Visovatti SH, Hyman MC, Hayasaki T, Pinsky DJ (2007) Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy. Nat Protoc 2:471–480

    Article  PubMed  CAS  Google Scholar 

  12. Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102:2713–2719

    Article  PubMed  CAS  Google Scholar 

  13. Heyen JR, Blasi ER, Nikula K, Rocha R, Daust HA, Frierdich G, Van Vleet JF, De Ciechi P, McMahon EG, Rudolph AE (2002) Structural, functional, and molecular characterization of the SHHF model of heart failure. Am J Physiol Heart Circ Physiol 283:H1775–1784

    PubMed  CAS  Google Scholar 

  14. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  PubMed  CAS  Google Scholar 

  15. John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L (2008) Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann Thorac Surg 86:1227–1234

    Article  PubMed  Google Scholar 

  16. Kapoun AM, Liang F, O’Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461

    Article  PubMed  CAS  Google Scholar 

  17. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D (2006) Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertension 47:901–911

    Article  PubMed  CAS  Google Scholar 

  18. Madigan JD, Barbone A, Choudhri AF, Morales DL, Cai B, Oz MC, Burkhoff D (2001) Time course of reverse remodeling of the left ventricle during support with a left ventricular assist device. J Thorac Cardiovasc Surg 121:902–908

    Article  PubMed  CAS  Google Scholar 

  19. Matsumiya G, Monta O, Fukushima N, Sawa Y, Funatsu T, Toda K, Matsuda H (2005) Who would be a candidate for bridge to recovery during prolonged mechanical left ventricular support in idiopathic dilated cardiomyopathy? J Thorac Cardiovasc Surg 130:699–704

    Article  PubMed  Google Scholar 

  20. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, Miller LW, Margulies K, McRee S, Frazier OH, Torre-Amione G (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497–2505

    Article  PubMed  Google Scholar 

  21. Oriyanhan W, Tsuneyoshi H, Nishina T, Matsuoka S, Ikeda T, Komeda M (2007) Determination of optimal duration of mechanical unloading for failing hearts to achieve bridge to recovery in a rat heterotopic heart transplantation model. J Heart Lung Transplant 26(1):16–23

    Article  PubMed  Google Scholar 

  22. Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, Bocan TM, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    Article  PubMed  CAS  Google Scholar 

  23. Wray J, Hallas CN, Banner NR (2007) Quality of life and psychological well-being during and after left ventricular assist device support. Clin Transplant 21:622–627

    Article  PubMed  Google Scholar 

  24. Zhou X, Yun JL, Han ZQ, Gao F, Li H, Jiang TM, Li YM (2011) Postinfarction healing dynamics in the mechanically unloaded rat left ventricle. Am J Physiol Heart Circ Physiol 300:1863–1874

    Article  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jun Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xu, YX., Du, XJ. et al. Dynamic expression profiles of MMPs/TIMPs and collagen deposition in mechanically unloaded rat heart: implications for left ventricular assist device support-induced cardiac alterations. J Physiol Biochem 69, 477–485 (2013). https://doi.org/10.1007/s13105-013-0235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-013-0235-x

Keywords

Navigation