Skip to main content

Advertisement

Log in

The effect of troglitazone on lipid accumulation and related gene expression in Hanwoo muscle satellite cell

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The current study was undertaken to determine the effect of the troglitazone (TGZ) on the expression of peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein, fatty acid binding protein 4, calpain 1 (CAPN1), and lipid accumulation in the myotube of Hanwoo muscle satellite cells. The satellite cells were treated with 5, 10, and 50 μM of TGZ for indicated time intervals. TGZ promoted the trans-differentiation with significant increase in glycerol accumulation. Polymerase chain reaction (PCR) and microarray results indicated that the TGZ treatment significantly increased the expression of adipogenic transcription factors. TGZ (10 and 50 μM) increased the CAPN1 gene expression 2.2- and 2.6-fold in real-time polymerase chain reaction analysis and 0.52- and 0.25-fold in microarray analysis, respectively, when compared with their respective controls. This result suggests that CAPN1 gene might be involved in the adipogenic differentiation programs. In addition, 13 genes were upregulated and 12 genes were downregulated in microarray analysis. Most of the up/downregulated genes were directly linked with adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TGZ:

Troglitazone

CEBPα:

CCAAT/enhancer-binding protein alpha

CEBPβ:

CCAAT/enhancer-binding protein beta

FABP4:

Fatty acid binding protein 4

PPARγ:

Peroxisome proliferator-activating receptor

CAPN1:

Calpain 1

TZD:

Thiazolidinedioes

PGZ:

Pioglitazone

RGZ:

Rosiglitazone

PCR:

Polymerase chain reaction

RT-PCR:

Real-time polymerase chain reaction

FBS:

Fetal bovine serum

References

  1. Aizawa J, Sakayama K, Kamei S, Kidani T, Yamamoto H, Norimatsu Y, Masuno H (2010) Effect of TGZ on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8. BMC Cancer 10(51):1471–2407

    Google Scholar 

  2. Allen DM, Chen LE, Seaber AV, Urbaniak JR (1997) Calcitonin gene-related peptide and reperfusion injury. J Orthop Res 15(2):243–248

    Article  PubMed  CAS  Google Scholar 

  3. Allen RE, Rankin LL (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med 194(2):81–86

    PubMed  CAS  Google Scholar 

  4. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68(4–5):245–253

    Article  PubMed  CAS  Google Scholar 

  5. Biron-Shental T, Schaiff WT, Ratajczak CK, Bildirici I, Nelson DM, Sadovsky, Y (2007) Hypoxia regulates the expression of fatty acid-binding proteins in primary term human trophoblasts. Am J Obstet Gynecol 197(5): 516.e1–e6

    Google Scholar 

  6. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115(1):129–139

    Article  PubMed  CAS  Google Scholar 

  7. Brulé C, Dargelos E, Diallo R, Listrat A, Béchet D, Cottin P, Poussard S (2010) Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 92(12):1923–1933

    Article  PubMed  Google Scholar 

  8. Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5(9):1538–1552

    Article  PubMed  CAS  Google Scholar 

  9. Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283

    Article  PubMed  CAS  Google Scholar 

  10. Cornelius P, MacDougald OA, Lane MD (1994) Regulation of adipocyte development. Annu Rev Nutr 14:99–129

    Article  PubMed  CAS  Google Scholar 

  11. De Coppi P, Milan G, Scarda A, Boldrin L, Centobene C, Piccoli M, Pozzobon M, Pilon C, Pagano C, Gamba P, Vettor R (2006) Rosiglitazone modifies the adipogenic potential of human muscle satellite cells. Diabetologia 49(8):1962–1973

    Article  PubMed  CAS  Google Scholar 

  12. Dodson MV, Martin EL, Brannon MA, Mathison BA, Mcfarland DC (1987) Optimization of bovine satellite cell derived myotube formation in vitro. Tissue Cell 19(2):159–166

    Article  PubMed  CAS  Google Scholar 

  13. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273

    Article  PubMed  CAS  Google Scholar 

  14. Fux C, Mitta B, Kramer BP, Fussenegger M (2004) Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res 32(1):e1

    Article  PubMed  Google Scholar 

  15. Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B, Visser M, Harris TB (2005) Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 81:903–910

    PubMed  CAS  Google Scholar 

  16. Gillilan RE, Ayers SD, Noy N (2007) Structural basis for activation of fatty acid-binding protein 4. Mol Biol 372(5):1246–1260

    Article  CAS  Google Scholar 

  17. Gondret JF, Lebret B (2002) Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. J Anim Sci 80(12):3184–3193

    PubMed  CAS  Google Scholar 

  18. Hu E, Tontonoz P, Spiegelman BM (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA 92(21):9856–9860

    Article  PubMed  CAS  Google Scholar 

  19. Kook SH, Choi KC, Son YO, Lee KY, Hwang IH, Lee HJ, Chang JS, Choi IH, Lee JC (2006) Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol Cells 22(2):239–245

    PubMed  CAS  Google Scholar 

  20. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  PubMed  CAS  Google Scholar 

  21. Lin FT, Lane MD (1992) Antisense CCAAT/enhancer binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 adipocytes. Genes Dev 6(4):533–544

    Article  PubMed  CAS  Google Scholar 

  22. Lin FT, Lane MD (1994) CCAAT/enhancer binding protein is sufficient to initiate the 3T3-L1 adipocyte differentiation. Proc Natl Acad Sci USA 91:8757–8761

    Article  PubMed  CAS  Google Scholar 

  23. Lin FT, MacDougald OA, Diehl AM, Lane MD (1993) A 30-kda alternative translation product of the ccaat/enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc Natl Acad Sci USA 90:9606–9610

    Article  PubMed  CAS  Google Scholar 

  24. Liu C, Gersch RP, Hawke TJ, Hadjiargyrou M (2010) Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am J Physiol Cell Physiol 298(5):C1100–C1108

    Article  PubMed  CAS  Google Scholar 

  25. MacDougald OA, Lane MD (1995) Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 64:345–373

    Article  PubMed  CAS  Google Scholar 

  26. Moyen C, Goudenege S, Poussard S, Sassi AH, Brustis JJ, Cottin P (2004) Involvement of micro-calpain (CAPN 1) in muscle cell differentiation. Int J Biochem Cell Biol 36(4):728–743

    Article  PubMed  CAS  Google Scholar 

  27. Nishimura M, Mikura M, Hirasaka K, Okumura Y, Nikawa T, Kawano Y, Nakayama M, Ikeda M (2008) Effects of dimethyl sulphoxide and dexamethasone on mRNA expression of myogenesis- and muscle proteolytic system-related genes in mouse myoblastic C2C12 cells. J Biochem 144(6):717–724

    Article  PubMed  CAS  Google Scholar 

  28. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T (1998) TGZ increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361

    Article  PubMed  CAS  Google Scholar 

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  30. Rhoads RP, Fernyhough ME, Liu X, McFarland DC, Velleman SG, Hausman GJ, Dodson MV (2009) Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domest Anim Endocrin 36:111–126

    Article  CAS  Google Scholar 

  31. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617

    Article  PubMed  CAS  Google Scholar 

  32. Rosen ED, Spiegelman BM (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276(41):37731–37734

    PubMed  CAS  Google Scholar 

  33. Singh NK, Chae HS, Hwang IH, Yoo YM, Ahn CN, Lee SH, Lee HJ, Park HJ, Chung HY (2007) Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J Anim Sci 85:1126–1135

    Article  PubMed  CAS  Google Scholar 

  34. Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA (1995) TZDs and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem 27:28183–28187

    Google Scholar 

  35. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  PubMed  CAS  Google Scholar 

  36. Ueda Y, Wang MC, Ou BR, Huang J, Elce J, Tanaka K, Ichihara A, Forsberg NE (1998) Evidence for the participation of the proteasome and calpain in early phases of muscle cell differentiation. Int J Biochem Cell Biol 30(6):679–694

    Article  PubMed  CAS  Google Scholar 

  37. Van Barneveld RJ (2003) Modern pork production—balancing efficient growth and feed conversion with product quality requirements and consumer demands. Asia Pac J Clin Nutr 12:S31

    PubMed  Google Scholar 

  38. Vansant G, Pezzoli P, Saiz R, Birch A, Duffy C, Ferre F, Monforte J (2006) Gene expression analysis of troglitazone reveals its impact on multiple pathways in cell culture: a case for in vitro platforms combined with gene expression analysis for early (idiosyncratic) toxicity screening. Int J Toxicol 25(2):85–94

    Article  PubMed  CAS  Google Scholar 

  39. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N (2002) Generation of different fates from multipotent muscle stem cells. Development 129:2987–2995

    PubMed  CAS  Google Scholar 

  40. Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122(5):659–667

    Article  PubMed  CAS  Google Scholar 

  41. Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferatoractivated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367

    Article  PubMed  CAS  Google Scholar 

  42. Yada E, Yamanouchi K, Nishihara M (2005) Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J Vet Med Sci 68(5):479–486

    Article  Google Scholar 

  43. Yeh WC, Cao Z, Classon M, McKnight SL (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181

    Article  PubMed  CAS  Google Scholar 

  44. Yeow K, Phillips B, Dani C, Cabane C, Amri EZ, Dérijard B (2001) Inhibition of myogenesis enables adipogenic transdifferentiation in the C2C12 myogenic cell line. FEBS Lett 506(2):157–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

It should be acknowledged that this work was supported by the research grants for the Next Generation Biogreen Projects (no. PJ008191), RDA and the research grants for the FTA issue project (no. PJ907055), RDA, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to InHo Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.B., Pandurangan, M., Jeong, D. et al. The effect of troglitazone on lipid accumulation and related gene expression in Hanwoo muscle satellite cell. J Physiol Biochem 69, 97–109 (2013). https://doi.org/10.1007/s13105-012-0193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0193-8

Keywords

Navigation