Skip to main content

Advertisement

Log in

Unraveling STIM2 function

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The discovery of molecular players in capacitative calcium (Ca2+) entry, also referred to as store-operated Ca2+ entry (SOCE), supposed a great advance in the knowledge of cellular mechanisms of Ca2+ entry, which are essential for a broad range of cellular functions. The identification of STIM1 and STIM2 proteins as the sensors of Ca2+ stored in the endoplasmic reticulum unraveled the mechanism by which depletion of intracellular Ca2+ stores is communicated to store-operated Ca2+ channels located in the plasma membrane, triggering the activation of SOCE and intracellular Ca2+-dependent signaling cascades. Initial studies suggested a dominant function of STIM1 in SOCE and SOCE-dependent cellular functions compared to STIM2, especially those that participate in immune responses. Consequently, most of the subsequent studies focused on STIM1. However, during the last years, STIM2 has been demonstrated to play a more relevant and complex function than initially reported, being even important to sustain normal life in mice. These studies have led to reconsider the role of STIM2 in SOCE and its relevance in cellular physiology. This review is intended to summarize and provide an overview of the current data available about this exciting isoform, STIM2, and its actual position together with STIM1 in the mechanism of SOCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    PubMed  CAS  Google Scholar 

  2. Abell E, Ahrends R, Bandara S, Park BO, Teruel MN (2011) Parallel adaptive feedback enhances reliability of the Ca2+ signaling system. Proc Natl Acad Sci U S A 108:14485–14490

    PubMed  CAS  Google Scholar 

  3. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103:16704–16709

    PubMed  CAS  Google Scholar 

  4. Bandyopadhyay BC, Pingle SC, Ahern GP (2011) Store-operated Ca2+ signaling in dendritic cells occurs independently of STIM1. J Leukoc Biol 89:57–62

    PubMed  CAS  Google Scholar 

  5. Barrero MJ, Montero M, Alvarez J (1997) Dynamics of Ca2+ in the endoplasmic reticulum and cytoplasm of intact HeLa cells. A comparative study. JBiolChem 272:27694–27699

    CAS  Google Scholar 

  6. Bauer MC, O'Connell D, Cahill DJ, Linse S (2008) Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47:6089–6091

    PubMed  CAS  Google Scholar 

  7. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2:ra67

    PubMed  Google Scholar 

  8. Berridge M (2004) Conformational coupling: a physiological calcium entry mechanism. Sci STKE 2004:pe33

  9. Beyersdorf N, Braun A, Vogtle T, Varga-Szabo D, Galdos RR, Kissler S, Kerkau T, Nieswandt B (2009) STIM1-independent T cell development and effector function in vivo. J Immunol 182:3390–3397

    PubMed  CAS  Google Scholar 

  10. Bird GS, Hwang SY, Smyth JT, Fukushima M, Boyles RR, Putney JW Jr (2009) STIM1 is a calcium sensor specialized for digital signaling. Curr Biol 19:1724–1729

    PubMed  CAS  Google Scholar 

  11. Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd'heuil D, Trebak M (2010) Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol Cell Physiol 298:C993–C1005

    PubMed  CAS  Google Scholar 

  12. Blackmore PF (2011) Biphasic effects of nitric oxide on calcium influx in human platelets. Thromb Res 127:e8–e14

    PubMed  CAS  Google Scholar 

  13. Bojarski L, Pomorski P, Szybinska A, Drab M, Skibinska-Kijek A, Gruszczynska-Biegala J, Kuznicki J (2009) Presenilin-dependent expression of STIM proteins and dysregulation of capacitative Ca2+ entry in familial Alzheimer's disease. Biochim Biophys Acta 1793:1050–1057

    PubMed  CAS  Google Scholar 

  14. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    PubMed  CAS  Google Scholar 

  15. Braun A, Gessner JE, Varga-Szabo D, Syed SN, Konrad S, Stegner D, Vogtle T, Schmidt RE, Nieswandt B (2009) STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 113:1097–1104

    PubMed  CAS  Google Scholar 

  16. Brechard S, Plancon S, Melchior C, Tschirhart EJ (2009) STIM1 but not STIM2 is an essential regulator of Ca2+ influx-mediated NADPH oxidase activity in neutrophil-like HL-60 cells. Biochem Pharmacol 78:504–513

    PubMed  CAS  Google Scholar 

  17. Cai X (2007) Molecular evolution and functional divergence of the Ca2+ sensor protein in store-operated Ca2+ entry: stromal interaction molecule. PLoS One 2:e609

    PubMed  Google Scholar 

  18. Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797:595–606

    PubMed  CAS  Google Scholar 

  19. Collins SR, Meyer T (2011) Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol 21:202–211

    PubMed  CAS  Google Scholar 

  20. Cordeiro S, Strauss O (2011) Expression of Orai genes and I(CRAC) activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 249:47–54

    PubMed  CAS  Google Scholar 

  21. Chen XF, Li CX, Wang PY, Li M, Wang WC (2008) Dynamic simulation of the effect of calcium-release activated calcium channel on cytoplasmic Ca2+ oscillation. Biophys Chem 136:87–95

    PubMed  CAS  Google Scholar 

  22. Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108:15225–15230

    PubMed  CAS  Google Scholar 

  23. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708

    PubMed  CAS  Google Scholar 

  24. Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L (2011) STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. J Cell Biol 194:335–346

    PubMed  CAS  Google Scholar 

  25. Darbellay B, Arnaudeau S, Ceroni D, Bader CR, Konig S, Bernheim L (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285:22437–22447

    PubMed  CAS  Google Scholar 

  26. Darbellay B, Arnaudeau S, Konig S, Jousset H, Bader C, Demaurex N, Bernheim L (2009) STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284:5370–5380

    PubMed  CAS  Google Scholar 

  27. Decuypere JP, Monaco G, Kiviluoto S, Oh-hora M, Luyten T, De Smedt H, Parys JB, Missiaen L, Bultynck G (2010) STIM1, but not STIM2, is required for proper agonist-induced Ca2+ signaling. Cell Calcium 48:161–167

    PubMed  CAS  Google Scholar 

  28. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    PubMed  CAS  Google Scholar 

  29. Demaurex N, Frieden M (2003) Measurements of the free luminal ER Ca2+ concentration with targeted “cameleon” fluorescent proteins. Cell Calcium 34:109–119

    PubMed  CAS  Google Scholar 

  30. El Boustany C, Katsogiannou M, Delcourt P, Dewailly E, Prevarskaya N, Borowiec AS, Capiod T (2010) Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium 47:350–359

    PubMed  CAS  Google Scholar 

  31. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29:197–208

    PubMed  CAS  Google Scholar 

  32. Ercan E, Momburg F, Engel U, Temmerman K, Nickel W, Seedorf M (2009) A conserved, lipid-mediated sorting mechanism of yeast Ist2 and mammalian STIM proteins to the peripheral ER. Traffic 10:1802–1818

    PubMed  CAS  Google Scholar 

  33. Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D (2010) Coupling of mitochondria to store-operated Ca2 + -signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium 47:525–537

    PubMed  CAS  Google Scholar 

  34. Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ, Monteith GR, Rao R (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98

    PubMed  CAS  Google Scholar 

  35. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    PubMed  CAS  Google Scholar 

  36. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    PubMed  CAS  Google Scholar 

  37. Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    PubMed  CAS  Google Scholar 

  38. Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135:169–182

    PubMed  CAS  Google Scholar 

  39. Gao YD, Hanley PJ, Rinne S, Zuzarte M, Daut J (2010) Calcium-activated K + channel (KCa3.1) activity during Ca2+ store depletion and store-operated Ca2+ entry in human macrophages. Cell Calcium 48:19–27

    PubMed  CAS  Google Scholar 

  40. Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D, van der Meijden PE, Kuijpers MJ, Varga-Szabo D, Heemskerk JW, Nieswandt B (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285:23629–23638

    PubMed  CAS  Google Scholar 

  41. Graham SJ, Dziadek MA, Johnstone LS (2011) A cytosolic STIM2 preprotein created by signal peptide inefficiency activates ORAI1 in a store-independent manner. J Biol Chem 286:16174–16185

    PubMed  CAS  Google Scholar 

  42. Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Muhlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550

    PubMed  CAS  Google Scholar 

  43. Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J (2011) Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 6:e19285

    PubMed  CAS  Google Scholar 

  44. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    PubMed  CAS  Google Scholar 

  45. Jia H, Rochefort NL, Chen X, Konnerth A (2011) In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat Protoc 6:28–35

    PubMed  CAS  Google Scholar 

  46. Jousset H, Frieden M, Demaurex N (2007) STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J Biol Chem 282:11456–11464

    PubMed  CAS  Google Scholar 

  47. Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3:ra82

    PubMed  CAS  Google Scholar 

  48. Kuang CY, Yu Y, Guo RW, Qian DH, Wang K, Den MY, Shi YK, Huang L (2010) Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells. Biochem Biophys Res Commun 398:315–320

    PubMed  CAS  Google Scholar 

  49. Kurosaki T, Baba Y (2010) Ca2+ signaling and STIM1. Prog Biophys Mol Biol 103:51–58

    PubMed  CAS  Google Scholar 

  50. Li Z, Lu J, Xu P, Xie X, Chen L, Xu T (2007) Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 282:29448–29456

    PubMed  CAS  Google Scholar 

  51. Limnander A, Depeille P, Freedman TS, Liou J, Leitges M, Kurosaki T, Roose JP, Weiss A (2011) STIM1, PKC-delta and RasGRP set a threshold for proapoptotic Erk signaling during B cell development. Nat Immunol 12:425–433

    PubMed  CAS  Google Scholar 

  52. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2 + -store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    PubMed  CAS  Google Scholar 

  53. Lopez JJ, Jardin I, Bobe R, Pariente JA, Enouf J, Salido GM, Rosado JA (2008) STIM1 regulates acidic Ca2+ store refilling by interaction with SERCA3 in human platelets. Biochem Pharmacol 75:2157–2164

    PubMed  CAS  Google Scholar 

  54. Lu W, Wang J, Peng G, Shimoda LA, Sylvester JT (2009) Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 297:L17–L25

    PubMed  CAS  Google Scholar 

  55. Ma J, McCarl CA, Khalil S, Luthy K, Feske S (2010) T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunol 40:3028–3042

    PubMed  CAS  Google Scholar 

  56. Mancarella S, Wang Y, Gill DL (2009) Calcium signals: STIM dynamics mediate spatially unique oscillations. Curr Biol 19:R950–R952

    PubMed  CAS  Google Scholar 

  57. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    PubMed  CAS  Google Scholar 

  58. Matsumoto M, Fujii Y, Baba A, Hikida M, Kurosaki T, Baba Y (2011) The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 34:703–714

    PubMed  CAS  Google Scholar 

  59. McAndrew D, Grice DM, Peters AA, Davis FM, Stewart T, Rice M, Smart CE, Brown MA, Kenny PA, Roberts-Thomson SJ, Monteith GR (2011) ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 10:448–460

    PubMed  CAS  Google Scholar 

  60. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3:pii: a004317

    Google Scholar 

  61. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    PubMed  CAS  Google Scholar 

  62. Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776

    PubMed  CAS  Google Scholar 

  63. Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183

    PubMed  CAS  Google Scholar 

  64. Muik M, Fahrner M, Schindl R, Stathopulos P, Frischauf I, Derler I, Plenk P, Lackner B, Groschner K, Ikura M, Romanin C (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30:1678–1689

    PubMed  CAS  Google Scholar 

  65. Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10:645–656

    PubMed  Google Scholar 

  66. Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    PubMed  CAS  Google Scholar 

  67. Parekh AB (2007) Functional consequences of activating store-operated CRAC channels. Cell Calcium 42:111–121

    PubMed  CAS  Google Scholar 

  68. Parekh AB (2009) Local Ca2+ influx through CRAC channels activates temporally and spatially distinct cellular responses. Acta Physiol (Oxf) 195:29–35

    CAS  Google Scholar 

  69. Parry DA, Fraser RD, Squire JM (2008) Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. JStructBiol 163:258–269

    CAS  Google Scholar 

  70. Parvez S, Beck A, Peinelt C, Soboloff J, Lis A, Monteilh-Zoller M, Gill DL, Fleig A, Penner R (2008) STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 22:752–761

    PubMed  CAS  Google Scholar 

  71. Peel SE, Liu B, Hall IP (2006) A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir Res 7:119

    PubMed  Google Scholar 

  72. Petersen OH, Gerasimenko OV, Gerasimenko JV, Mogami H, Tepikin AV (1998) The calcium store in the nuclear envelope. Cell Calcium 23:87–90

    PubMed  CAS  Google Scholar 

  73. Petersen OH, Petersen CC, Kasai H (1994) Calcium and hormone action. Annu Rev Physiol 56:297–319

    PubMed  CAS  Google Scholar 

  74. Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    PubMed  CAS  Google Scholar 

  75. Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308

    PubMed  CAS  Google Scholar 

  76. Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457:405–415

    PubMed  CAS  Google Scholar 

  77. Pozo-Guisado E, Campbell DG, Deak M, Alvarez-Barrientos A, Morrice NA, Alvarez IS, Alessi DR, Martin-Romero FJ (2010) Phosphorylation of STIM1 at ERK1/2 target sites modulates store-operated calcium entry. J Cell Sci 123:3084–3093

    PubMed  CAS  Google Scholar 

  78. Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE 2005:re7

  79. Qu B, Al-Ansary D, Kummerow C, Hoth M, Schwarz EC (2011) ORAI-mediated calcium influx in T cell proliferation, apoptosis and tolerance. Cell Calcium 50:261–269

    PubMed  CAS  Google Scholar 

  80. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    PubMed  CAS  Google Scholar 

  81. Ruano Y, Mollejo M, Ribalta T, Fiano C, Camacho FI, Gomez E, de Lope AR, Hernandez-Moneo JL, Martinez P, Melendez B (2006) Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer 5:39

    PubMed  Google Scholar 

  82. Saitoh N, Oritani K, Saito K, Yokota T, Ichii M, Sudo T, Fujita N, Nakajima K, Okada M, Kanakura Y (2011) Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 112:147–156

    PubMed  CAS  Google Scholar 

  83. Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21:457–461

    PubMed  CAS  Google Scholar 

  84. Schuhmann MK, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth SG, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184:1536–1542

    PubMed  CAS  Google Scholar 

  85. Shi Y, Song M, Guo R, Wang H, Gao P, Shi W, Huang L (2010) Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation. Exp Biol Med (Maywood) 235:317–325

    CAS  Google Scholar 

  86. Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J (2009) Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp (Wars) 69:413–428

    Google Scholar 

  87. Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11:1465–1472

    PubMed  CAS  Google Scholar 

  88. Soboloff J, Madesh M, Gill DL (2011) Sensing cellular stress through STIM proteins. Nat Chem Biol 7:488–492

    PubMed  CAS  Google Scholar 

  89. Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL (2006) STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr Biol 16:1465–1470

    PubMed  CAS  Google Scholar 

  90. Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    PubMed  CAS  Google Scholar 

  91. Song MY, Makino A, Yuan JX (2011) STIM2 contributes to enhanced store-operated Ca entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1:84–94

    PubMed  CAS  Google Scholar 

  92. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc Natl Acad Sci U S A 103:4040–4045

    PubMed  CAS  Google Scholar 

  93. Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446

    PubMed  CAS  Google Scholar 

  94. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    PubMed  CAS  Google Scholar 

  95. Stathopulos PB, Zheng L, Ikura M (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 284:728–732

    PubMed  CAS  Google Scholar 

  96. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122

    PubMed  CAS  Google Scholar 

  97. Thiel M, Wolfs MJ, Bauer S, Wenning AS, Burckhart T, Schwarz EC, Scott AM, Renner C, Hoth M (2010) Efficiency of T-cell costimulation by CD80 and CD86 cross-linking correlates with calcium entry. Immunology 129:28–40

    PubMed  CAS  Google Scholar 

  98. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205:1583–1591

    PubMed  CAS  Google Scholar 

  99. Wang Y, Deng X, Zhou Y, Hendron E, Mancarella S, Ritchie MF, Tang XD, Baba Y, Kurosaki T, Mori Y, Soboloff J, Gill DL (2009) STIM protein coupling in the activation of Orai channels. Proc Natl Acad Sci U S A 106:7391–7396

    PubMed  CAS  Google Scholar 

  100. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, Smith PJ, Dziadek MA (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357:673–685

    PubMed  CAS  Google Scholar 

  101. Williams RT, Senior PV, Van SL, Layton JE, Smith PJ, Dziadek MA (2002) Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. BiochimBiophysActa 1596:131–137

    CAS  Google Scholar 

  102. Wissenbach U, Philipp SE, Gross SA, Cavalie A, Flockerzi V (2007) Primary structure, chromosomal localization and expression in immune cells of the murine ORAI and STIM genes. Cell Calcium 42:439–446

    PubMed  CAS  Google Scholar 

  103. Yarkoni Y, Cambier JC (2011) Differential STIM1 expression in T and B cell subsets suggests a role in determining antigen receptor signal amplitude. Mol Immunol 48:1851–1858

    PubMed  CAS  Google Scholar 

  104. Yu R, Hinkle PM (2000) Rapid turnover of calcium in the endoplasmic reticulum during signaling. Studies with cameleon calcium indicators. J Biol Chem 275:23648–23653

    PubMed  CAS  Google Scholar 

  105. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    PubMed  CAS  Google Scholar 

  106. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286:12257–12270

    PubMed  CAS  Google Scholar 

  107. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362

    PubMed  CAS  Google Scholar 

  108. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    PubMed  CAS  Google Scholar 

  109. Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369:240–246

    PubMed  CAS  Google Scholar 

  110. Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci U S A 108:1337–1342

    PubMed  CAS  Google Scholar 

  111. Zhou Y, Mancarella S, Wang Y, Yue C, Ritchie M, Gill DL, Soboloff J (2009) The short N-terminal domains of STIM1 and STIM2 control the activation kinetics of Orai1 channels. J Biol Chem 284:19164–19168

    PubMed  CAS  Google Scholar 

  112. Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Junta de Extremadura-FEDER (grant GR10010) and MICINN (BFU2010-21043-C02-01) supported this study. E. López held a fellowship from MEC-Carlos III Health Institute (FI10/00573). A. Berna-Erro is supported by the University of Extremadura (D-03) and Fundesalud (PRIS11035).

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Berna-Erro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, E., Salido, G.M., Rosado, J.A. et al. Unraveling STIM2 function. J Physiol Biochem 68, 619–633 (2012). https://doi.org/10.1007/s13105-012-0163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0163-1

Keywords

Navigation