Skip to main content

Advertisement

Log in

The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

One of the most widely used animal models of Parkinson’s disease (PD) involves injecting 6-hydroxydopamine (6-OHDA) directly into the substantia nigra (SN). Some recent reports speculated that dopaminergic drugs may exert brain antioxidant activity, which could explain some of their protective actions. In this way, the aim of the present study was to examine the effects of low-dose pergolide on memory deficits and brain oxidative stress in a 6-OHDA-induced rat model of PD. Right-unilateral lesions of the SN were produced with 6-OHDA. Two weeks after neurosurgery, pergolide (0.3 mg/kg/day) was injected intraperitoneally in the 6-OHDA + pergolide and sham-operated + pergolide groups, while sham-operated and 6-OHDA alone groups received saline. Radial-8-arm maze and Y-maze were used for memory assessment. We also determined some enzymatic antioxidant defenses like superoxide dismutase or glutathione peroxidase and a lipid peroxidation marker [malondialdehyde (MDA)], from the temporal lobe. A reduced number of working/reference memory errors was observed in 6-OHDA + pergolide group, compared to sham-operated rats. Additionally, post hoc analysis showed significant differences between 6-OHDA and 6-OHDA + pergolide groups in both Y-maze and radial-arm-maze tasks. We also noted a significant decrease of MDA level in the 6-OHDA + pergolide group, compared to sham-operated rats. Significant correlations were also found between behavioral parameters and MDA levels. Our data suggest that pergolide facilitates spatial memory and improves brain oxidative balance, after a 6-OHDA-induced model of PD. This could be useful for further investigations and clinical applications of pergolide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abeliovich A (2010) Parkinson’s disease: mitochondrial damage control. Nature 463:744–745

    Article  PubMed  CAS  Google Scholar 

  2. Avila I, Reilly MP, Sanabria F, Posadas-Sánchez D, Chavez CL, Banerjee N, Killeen P, Castañeda E (2009) Modeling operant behavior in the parkinsonian rat. Behav Brain Res 198:298–305

    Article  PubMed  Google Scholar 

  3. Berretta N, Freestone PS, Guatteo E, de Castro D, Geracitano R, Bernardi G, Mercuri NB, Lipski J (2005) Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro. Neurotoxicology 26:869–881

    Article  PubMed  CAS  Google Scholar 

  4. Bisaglia M, Soriano ME, Arduini I, Mammi S, Bubacco L (2010) Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2010.06.006

  5. Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT (2007) Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 25:397–405

    Article  PubMed  Google Scholar 

  6. Branchi I, D’Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pèzzola A, Potenza RL, Morgese MG, Cassano T, Minghetti L, Popoli P, Alleva E (2010) Striatal 6-OHDA lesion in mice: investigating early neurochemical changes underlying Parkinson’s disease. Behav Brain Res 208:137–143

    Article  PubMed  CAS  Google Scholar 

  7. Brusa L, Tiraboschi P, Koch G, Peppe A, Pierantozzi M, Ruggieri S, Stanzione P (2005) Pergolide effect on cognitive functions in early-mild Parkinson’s disease. J Neural Transm 112:231–237

    Article  PubMed  CAS  Google Scholar 

  8. Chalimoniuk M, Stepień A, Strosznajder JB (2004) Pergolide mesylate, a dopaminergic receptor agonist, applied with l-DOPA enhances serum antioxidant enzyme activity in Parkinson disease. Clin Neuropharmacol 27:223–229

    Article  PubMed  CAS  Google Scholar 

  9. Ciobica A, Hritcu L, Artenie V (2009) Changes in the activity of the antioxidant enzymes in 6-hydroxydopamine-induced rat model of Parkinson’s disease. J Neurol Sci 283:282–283

    Article  Google Scholar 

  10. Ciobica A, Hritcu L, Artenie V, Padurariu M (2008) Cognitive disorders in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Eur Neuropsychopharmacol 18:276

    Google Scholar 

  11. Ciobica A, Hritcu L, Artenie V, Padurariu M (2008) Some aspects of oxidative stress in a rat model of of Parkinson’s disease. Int J Neuropsychopharmacol 11:228–229

    Google Scholar 

  12. Ciobica A, Hritcu L, Artenie V, Padurariu M (2008) The effects of 6-OHDA in the rat brain (memory and oxidative stress processes). Proceedings of the 16th European .Congress of Physical and Rehabilitation Medicine, Brugge, Belgium, 3–6 June 2008. Edizioni Minerva Medica, Turin, pp 132–135

    Google Scholar 

  13. Ciobica A, Hritcu L, Artenie V, Padurariu M, Bild W (2009) A possible correlation between memory and neuronal oxidative stress status in a 6-OHDA model of Parkinson’s disease. Parkinsonism Relat Disord 15:177–178

    Article  Google Scholar 

  14. Ciobica A, Hritcu L, Artenie V, Stoica B, Bild V (2009) Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioural responses and oxidative damage in rats. Acta Endocrinol 5:425–436

    CAS  Google Scholar 

  15. Ciobica A, Hritcu L, Padurariu M, Dobrin R, Bild V (2010) Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: relevance for anxiety and affective disorders. Adv Med Sci 55(2):89–296

    Article  Google Scholar 

  16. Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo GA (2009) Dopamine and cognitive functioning in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on working memory. Neuropsychologia 47:1374–1381

    Article  PubMed  Google Scholar 

  17. da Conceição FS, Ngo-Abdalla S, Houzel JC, Rehen SK (2010) Murine model for Parkinson’s disease: from 6-OH dopamine lesion to behavioral test. J Vis Exp 35. doi:10.3791/1376

  18. De Leonibus E, Managò F, Giordani F, Petrosino F, Lopez S, Oliverio A, Amalric M, Mele A (2009) Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson’s disease. Neuropsychopharmacology 34:729–738

    Article  PubMed  Google Scholar 

  19. De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A (2007) Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl) 194:517–525

    Article  CAS  Google Scholar 

  20. Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 148:78–87

    Article  PubMed  CAS  Google Scholar 

  21. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93:4765–4769

    Article  PubMed  CAS  Google Scholar 

  22. Friedman A, Galazka-Friedman J, Koziorowski D (2009) Iron as a cause of Parkinson disease — a myth or a well established hypothesis? Parkinsonism Relat Disord 15:212–214

    Article  Google Scholar 

  23. Gille G, Rausch WD, Hung ST, Moldzio R, Janetzky B, Hundemer HP, Kolter T, Reichmann H (2002) Pergolide protects dopaminergic neurons in primary culture under stress conditions. J Neural Transm 109:633–643

    Article  PubMed  CAS  Google Scholar 

  24. Gomez-Vargas M, Nishibayashi-Asanuma S, Asanuma M (1998) Pergolide scavenges both hydroxyl and nitric oxide free radicals in vitro and inhibits peroxidation in different regions of the rat brain. Brain Res 790:202–208

    Article  PubMed  CAS  Google Scholar 

  25. Gurzu C, Artenie V, Hritcu L, Ciobica A (2008) Prenatal testosterone improves the spatial learning and memory by protein synthesis in different lobes of the brain in the male and female rat. Cent Eur J Biol 3:39–47

    Article  CAS  Google Scholar 

  26. Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 4th edn. Oxford Univ Press, New York

    Google Scholar 

  27. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular autooxidation and caspase 3-dependent activation of protein kinase C delta. J Biol Chem 281:5373–5382

    Article  PubMed  CAS  Google Scholar 

  28. Hritcu L, Ciobica A, Artenie V (2008) Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: relevance for Parkinson’s disease. Cent Eur J Biol 3:250–257

    Article  CAS  Google Scholar 

  29. Hritcu L, Ciobica A, Gorgan L (2009) Nicotine-induced memory impairment by increasing brain oxidative stress. Cent Eur J Biol 4:335–342

    Article  CAS  Google Scholar 

  30. Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M (2001) The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26:353–361

    Article  PubMed  CAS  Google Scholar 

  32. Kimberg DY, D’Esposito M (2003) Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia 41:1020–1027

    Article  PubMed  Google Scholar 

  33. Küçükatay V, Balkan S, Yaraş N, Yargiçoğlu P, Ağar A (2002) The effect of pergolide on cognitive performance of young and middle-aged rats. Int J Neurosci 112:1027–1036

    Article  PubMed  Google Scholar 

  34. Le WD, Jankovic J (2001) Are dopamine receptor agonists neuroprotective in Parkinson’s disease? Drugs Aging 18:389–396

    Article  PubMed  CAS  Google Scholar 

  35. Levin ED (1995) Pergolide interactions with nicotine and pilocarpine in rats on the radial-arm maze. Pharmacol Biochem Behav 52:837–840

    Article  PubMed  CAS  Google Scholar 

  36. Mehta MA, Riedel WJ (2006) Dopaminergic enhancement of cognitive function. Curr Pharm Des 12:2487–2500

    Article  PubMed  CAS  Google Scholar 

  37. Mei J, Niu C (2010) Alterations of Hrd1 expression in various encephalic regional neurons in 6-OHDA model of Parkinson’s disease. Neurosci Lett 474:63–68

    Article  PubMed  CAS  Google Scholar 

  38. Micale V, Incognito T, Ignoto A, Rampello L, Spartà M, Drago F (2006) Dopaminergic drugs may counteract behavioral and biochemical changes induced by models of brain injury. Eur Neuropsychopharmacol 16:195–203

    Article  PubMed  CAS  Google Scholar 

  39. Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:985–992

    Google Scholar 

  40. Ono S, Hirai K, Tokuda E (2009) Effects of pergolide mesilate on metallothionein mRNAs expression in a mouse model for Parkinson disease. Biol Pharm Bull 32:1813–1817

    Article  PubMed  CAS  Google Scholar 

  41. Opacka-Juffry J, Wilson AW, Blunt SB (1998) Effects of pergolide treatment on in vivo hydroxyl free radical formation during infusion of 6-hydroxyldopamine in rat striatum. Brain Res 810:27–33

    Article  PubMed  CAS  Google Scholar 

  42. Ozer F, Tiras R, Cetin S, Ozturk O, Aydemir T, Ozben S, Meral H, Kizkin S, Bader H, Ozben B (2009) Valvular heart disease in patients with Parkinson’s disease treated with pergolide, levodopa or both. J Clin Neurosci 16:83–87

    Article  PubMed  Google Scholar 

  43. Padurariu M, Ciobica A, Dobrin I, Stefanescu C (2010) Evaluation of antioxidant enzymes activities and lipid peroxidation in schizophrenic patients treated with typical and atypical antipsychotics. Neurosci Lett 479:317–320

    Article  PubMed  CAS  Google Scholar 

  44. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10

    Article  PubMed  CAS  Google Scholar 

  45. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Academic, San Diego

    Google Scholar 

  46. Possin KL, Filoteo JV, Song DD, Salmon DP (2008) Spatial and object working memory deficits in Parkinson’s disease are due to impairment in different underlying processes. Neuropsychology 22:585–595

    Article  PubMed  Google Scholar 

  47. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356:29–38

    Article  PubMed  CAS  Google Scholar 

  48. Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6:309–317

    Article  PubMed  CAS  Google Scholar 

  49. Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, Chong WL, Looi WF, Huang SH, Wang H, Chan YH, Halliwell B (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560–566

    Article  PubMed  CAS  Google Scholar 

  50. Shukitt-Hale B (1999) The effects of aging and oxidative stress on psychomotor and cognitive behavior. Age 22:9–17

    Article  Google Scholar 

  51. Shukitt-Hale B, Denisova NA, Strain JG, Joseph JA (1997) Psychomotor effects of dopamine infusion under decreased glutathione conditions. Free Radic Biol Med 23:412–418

    Article  PubMed  CAS  Google Scholar 

  52. Shukitt-Hale B, Erat SA, Joseph JA (1998) Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radic Biol Med 24:1149–1158

    Article  PubMed  CAS  Google Scholar 

  53. Spencer Smith T, Parker W, Bennett J (1994) Levodopa increases nigral production of hydroxyl radicals in vivo: potential levodopa toxicity? Neuroreport 5:1009–10011

    Article  Google Scholar 

  54. Uberti D, Carsana T, Francisconi S, Ferrari Toninelli G, Canonico PL, Memo M (2004) A novel mechanism for pergolide-induced neuroprotection: inhibition of NF-kappaB nuclear translocation. Biochem Pharmacol 67:1743–1750

    Article  PubMed  CAS  Google Scholar 

  55. Uberti D, Piccioni L, Colzi A, Bravi D, Canonico PL, Memo M (2002) Pergolide protects SH-SY5Y cells against neurodegeneration induced by H(2)O(2). Eur J Pharmacol 434:17–20

    Article  PubMed  CAS  Google Scholar 

  56. Van Camp G, Flamez A, Cosyns B, Weytjens C, Muyldermans L, Van Zandijcke M, De Sutter J, Santens P, Decoodt P, Moerman C, Schoors D (2004) Treatment of Parkinson’s disease with pergolide and relation to restrictive valvular heart disease. Lancet 363:1179–1183

    Article  PubMed  Google Scholar 

  57. Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, Jaklewicz A, Elbaum D, Friedman A (2010) Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism Relat Disord 16:329–333

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a POSDRU grant /89/1.5/S/49944, “Developing the innovation capacity and improving the impact of research through post-doctoral programs” Alexandru Ioan Cuza University, Iasi. The authors would also like to show their gratitude to the reviewer of this paper which significantly improved the value of the presented data by adding very important insights, comments, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin Ciobica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciobica, A., Olteanu, Z., Padurariu, M. et al. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease. J Physiol Biochem 68, 59–69 (2012). https://doi.org/10.1007/s13105-011-0119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0119-x

Keywords

Navigation