Skip to main content
Log in

Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cadmium is an endocrine disruptor that has been shown to induce chronotoxic effects. The present study was designed to evaluate the possible cadmium effects on the daily secretory pattern of adrenocorticotropin hormone (ACTH), growth hormone (GH), and thyroid-stimulating hormone (TSH) in adult male Sprague-Dawley rats. For this purpose, animals were treated with cadmium at two different doses [25 and 50 mg/l cadmium chloride (CdCl2)] in the drinking water for 30 days. Control age-matched rats received cadmium-free water. After the treatment, rats were killed at six different time intervals throughout a 24-h cycle. Cadmium exposure modified the 24-h pattern of plasma ACTH and GH levels, as the peak of ACTH content between 12:00 and 16:00 h in controls appeared at 12:00 h in the group treated with the lowest dose used, while it appeared between 16:00 and 20:00 h in rats exposed to 50 mg/l CdCl2. In addition, the peak of GH content found at 04:00 h in controls moved to 16:00 h in rats exposed to 25 mg/l CdCl2, and the highest dose used abolished 24-h changes of GH secretion. The metal treatment did not modify ACTH secretory pattern. Exposure to cadmium also increased ACTH and TSH medium levels around the clock with both doses used. These results suggest that cadmium modifies ACTH and TSH medium levels around the clock, as well as disrupted ACTH and GH secretory pattern, thus confirming the metal chronotoxicity at pituitary level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  CAS  PubMed  Google Scholar 

  2. Birzniece V, Sata A, Ho KK (2009) Growth hormone receptor modulators. Rev Endocr Metab Disord 10:145–56

    Article  CAS  PubMed  Google Scholar 

  3. Calderoni AM, Oliveros L, Jahn G, Anton R, Luco J, Giménez MS (2005) Alterations in the lipid content of pituitary gland and serum prolactin and growth hormone in cadmium treated rats. Biometals 18:213–220

    Article  CAS  PubMed  Google Scholar 

  4. Calderoni AM, Biaggio V, Acosta M, Oliveros L, Mohamed F, Giménez MS (2010) Cadmium exposure modifies lactotrophs activity associated to genomic and morphological changes in rat pituitary anterior lobe. Biometals 23:135–143

    Article  CAS  PubMed  Google Scholar 

  5. Cano P, Cardinali DP, Jimenez V, Chacon F, Cutrera RA, Esquifino AI (2003) Effect of aging on 24-hour changes in serotonin and dopamine turnover, and somatostatin and amino acid content, of the rat hypothalamus and pituitary gland. Biol Rhythm Res 34:279–294

    Article  CAS  Google Scholar 

  6. Cano P, Poliandri AH, Jiménez V, Cardinali DP, Esquifino AI (2007) Cadmium-induced changes in Per 1 and Per 2 gene expression in rat hypothalamus and anterior pituitary: effect of melatonin. Toxicol Lett 172:131–136

    Article  CAS  PubMed  Google Scholar 

  7. Caride A, Fernández-Pérez B, Cabaleiro T, Bernárdez G, Lafuente A (2010) Cadmium chloride exposure modifies amino acid daily pattern in the mediobasal hypothalamus in adult male rat. J Appl Toxicol 30:84–90

    Article  CAS  PubMed  Google Scholar 

  8. Caride A, Fernández Pérez B, Cabaleiro T, Lafuente A (2010) Daily pattern of pituitary glutamine, glutamate, and aspartate content disrupted by cadmium exposure. Amino Acids 38:1165–1172

    Article  CAS  PubMed  Google Scholar 

  9. Cory-Slechta DA, Weiss B (1981) Aversiveness of cadmium in solution. Trends Neurosci 19:417–422

    Google Scholar 

  10. Council Directive (1986/609/EC) of November 24, 1986 on the approximation of laws, regulation and administrative provisions of the member states regarding the protection of animals used for experimental and other scientific purposes. The Commission of the European Communities. DOCE L 358, 18 December 1986; 1–28.

  11. Cuadrado C, Kumpulainen J, Moreiras O (1995) Lead, cadmium and mercury contents in average Spanish market basket diets from Galicia, Valencia, Andalucía and Madrid. Food Addit Contam 12:107–118

    CAS  PubMed  Google Scholar 

  12. Esquifino AI, Cano P, Jimenez V, Reyes Toso CF, Cardinali DP (2004) Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin, gamma-aminobutyric acid, taurine and somatostatin in young and aged rats. Exp Gerontol 39:45–52

    Article  CAS  PubMed  Google Scholar 

  13. European Community Regulation (2001/466/EC) of March 8, 2001 setting maximum levels for certain contaminants in foodstuffs. The Commission of the European Communities. DOCE L 77, 16 March 2001; 1–27

  14. Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat. Biol Trace Elem Res 126:194–203

    Article  CAS  PubMed  Google Scholar 

  15. Iijima K, Otake T, Yoshinaga J, Ikegami M, Suzuki E, Naruse H, Yamanaka T, Shibuya N, Yasumizu T, Kato N (2007) Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res 119:10–18

    Article  CAS  PubMed  Google Scholar 

  16. Itoi K, Seasholtz AF, Watson SJ (1998) Cellular and extracellular regulatory mechanisms of hypothalamic corticotropin-releasing hormone neurons. Endocr J 45:13–33

    Article  CAS  PubMed  Google Scholar 

  17. Jackl GA, Kollmer WE (1982) The influence of exposure to different levels of cadmium on the secretion and biological halflife of corticosterone in the rat. Sci Total Environ 25:53–59

    Article  CAS  PubMed  Google Scholar 

  18. Kageyama K, Suda T (2009) Regulatory mechanisms underlying corticotropin-releasing factor gene expression in the hypothalamus. Endocr J 56:335–344

    Article  CAS  PubMed  Google Scholar 

  19. Koçak M, Akçil E (2006) The effects of chronic cadmium toxicity on the hemostatic system. Pathophysiol Haemost Thromb 35:411–416

    Article  PubMed  Google Scholar 

  20. Lafuente A, Esquifino AI (1998) Modulation of episodic adrenocorticotropin hormone secretion by cadmium in male rats. Biometals 11:183–188

    Article  CAS  PubMed  Google Scholar 

  21. Lafuente A, González-Carracedo A, Márquez N, Pazo D, Esquifino AI (2002) Oral cadmium exposure throughout puberty does not inhibit secretion of prolactin, GH and ACTH through dopamine metabolism changes in male rat. J Trace Elem Med Biol 16:249–254

    Article  CAS  PubMed  Google Scholar 

  22. Lafuente A, Cano P, Esquifino A (2003) Are cadmium effects on plasma gonadotropins, prolactin, ACTH, GH and TSH levels, dose-dependent? Biometals 16:243–250

    Article  CAS  PubMed  Google Scholar 

  23. Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifino AI (2004) Cadmium exposure differentially modifies the circadian patterns of norepinephrine at the median eminence and plasma LH, FSH and testosterone levels. Toxicol Lett 146:175–182

    Article  CAS  PubMed  Google Scholar 

  24. Lafuente A, González-Carracedo A, Romero A, Cabaleiro T, Esquifino AI (2005) Toxic effects of cadmium on the regulatory mechanism of dopamine and serotonin on prolactin secretion in adult male rats. Toxicol Lett 155:87–96

    Article  CAS  PubMed  Google Scholar 

  25. Lall SB, Dan G (1999) Role of corticosteroids in cadmium induced immunotoxicity. Drug Chem Toxicol 22:401–409

    Article  CAS  PubMed  Google Scholar 

  26. Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  CAS  PubMed  Google Scholar 

  27. Manca D, Ricard AC, Trottier B, Chevalier G (1991) Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 67:303–323

    Article  CAS  PubMed  Google Scholar 

  28. Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells by interference with essential metals. Biochimie 88:1807–1814

    Article  CAS  PubMed  Google Scholar 

  29. McMahon CD, Radcliff RP, Lookingland KJ, Tucker HA (2001) Neuroregulation of growth hormone secretion in domestic animals. Domest Anim Endocrinol 20:65–87

    Article  CAS  PubMed  Google Scholar 

  30. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, Paneth N, Wirth JJ (2009) Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ Res 109:869–873

    Article  CAS  PubMed  Google Scholar 

  31. Mgbonyebi OP, Smothers CT, Mrotek JJ (1998) Modulation of adrenal cell functions by cadmium salts. 5. Cadmium acetate and sulfate effects on basal and ACTH-stimulated steroidogenesis. Cell Biol Toxicol 14:301–311

    Article  CAS  PubMed  Google Scholar 

  32. Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  CAS  PubMed  Google Scholar 

  33. Pavia Júnior MA, Paier B, Noli MI, Hagmüller K, Zaninovich AA (1997) Evidence suggesting that cadmium induces a non-thyroidal illness syndrome in the rat. J Endocrinol 154:113–117

    Article  PubMed  Google Scholar 

  34. Pillai A, Laxmi Priya PN, Gupta S (2002) Effects of combined exposure to lead and cadmium on pituitary membrane of female rats. Arch Toxicol 76:671–675

    Article  CAS  PubMed  Google Scholar 

  35. Pillai A, Priya L, Gupta S (2003) Effects of combined exposure to lead and cadmium on the hypothalamic–pituitary axis function in proestrous rats. Food Chem Toxicol 41:379–384

    Article  CAS  PubMed  Google Scholar 

  36. Poliandri AH, Cabilla JP, Velardez MO, Bodo CC, Duvilanski BH (2003) Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicol Appl Pharmacol 190:17–24

    Article  CAS  PubMed  Google Scholar 

  37. Poliandri AH, Machiavelli LI, Quinteros AF, Cabilla JP, Duvilanski BH (2006) Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress. Free Radic Biol Med 40:679–688

    Article  CAS  PubMed  Google Scholar 

  38. Real Ordinance 1201/2005 of October 10, 2005 sobre protección de los animales utilizados para experimentación y otros fines científicos. BOE 252, 21 October 2005; 34367–34391

  39. Repetto M, López-Artíguez M (1995) Estado actual de la Toxicología del cadmio. In: Toxicología Avanzada. Díaz de Santos, Madrid, pp 393–418

  40. Satoh M, Kaji T, Tohyama C (2003) Low dose exposure to cadmium and its health effects. Toxicity in laboratory animals and cultured cells. Nippon Eiseigaku Zasshi 57:615–623

    CAS  PubMed  Google Scholar 

  41. Selgas L, Arce A, Esquifino AI, Cardinali DP (1997) Twenty-four-hour rhythms of serum ACTH, prolactin, growth hormone, and thyroid-stimulating hormone, and of median-eminence norepinephrine, dopamine, and serotonin, in rats injected with Freund's adjuvant. Chronobiol Int 14:253–265

    Article  CAS  PubMed  Google Scholar 

  42. Sellix MT, Egli M, Poletini MO, McKee DT, Bosworth MD, Fitch CA, Freeman ME (2006) Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. Am J Physiol Regul Integr Comp Physiol 290:R1309–1323

    CAS  PubMed  Google Scholar 

  43. Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400–405

    Article  CAS  PubMed  Google Scholar 

  44. Takiguchi M, Yoshihara S (2006) New aspects of cadmium as endocrine disruptor. Environ Sci 13:107–116

    CAS  PubMed  Google Scholar 

  45. Tong W, Li FY, Chen SQ, Chen JL, Ding T, Kuang AK, Xu MY (1992) A study on the regulation of ACTH secretion in rat pituitary cells. Sheng Li Xue Bao 44:414–419

    CAS  PubMed  Google Scholar 

  46. Van de Kar LD (1997) 5-HT receptors involved in the regulation of hormone secretion. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors. Springer, Berlin, pp 537–562

    Google Scholar 

  47. World Health Organization (WHO) (2000) Evaluation of certain food additives and contaminants. In: 55th Report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva.

Download references

Acknowledgements

This work was supported by grants from the Xunta de Galicia (PGIDT99PXI38301B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Caride.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caride, A., Fernández-Pérez, B., Cabaleiro, T. et al. Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern. J Physiol Biochem 66, 213–220 (2010). https://doi.org/10.1007/s13105-010-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0027-5

Keywords

Navigation