Skip to main content
Log in

Etanercept reduces matrix metalloproteinase-9 level in children with polyarticular juvenile idiopathic arthritis and TNF-α-308GG genotype

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Genetic contribution of tumor necrosis factor polymorphism (TNF-α-308G/A) in patients with juvenile idiopathic arthritis (JIA) on response to TNF blocking agents, as well as matrix metalloproteinase-9 (MMP-9) production, is not yet well established. We have investigated whether the TNF-α-308G/A polymorphism can influence MMP-9 level and clinical response to etanercept (TNF receptor II-Fc fusion protein) in JIA patients, after 1 year of treatment. A total of 66 patients with polyarticular JIA and 65 healthy children were screened for the polymorphism using the polymerase chain reaction–restriction fragment length polymorphism method. JIA patients donated paired blood samples prior to and 12 months after etanercept therapy. Plasma MMP-9 level was determined using an enzyme-linked immunosorbent assay kit. Clinical assessment was performed according to ACR Pedi 50 improvement criteria. The frequency of the A allele was significantly higher in JIA patients compared to controls (39% vs. 26%, P = 0.026). Patients with the −308GG genotype achieved an ACR Pedi 50 response significantly more frequently than those with the −308AA genotype (P = 0.035). MMP-9 level in patients with the genotype −308GG was significantly decreased after 1 year of treatment with etanercept compared to the value from before (P = 0.036). On the other hand, there was a decrease of MMP-9 levels after treatment, but not statistically significant in patients with the genotypes −308GA/AA. We conclude that etanercept reduces MMP-9 level in children with polyarticular JIA and TNF-α-308GG genotype. Our results correlate with findings that the −308A allele is associated with a lower response to etanercept treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen RD (1999) Polymorphism of the human TNF-alpha promoter-random variation or functional diversity? Mol Immunol 36:1017–1027

    Article  CAS  PubMed  Google Scholar 

  2. Bouma G, Crusius JBA, Pool O et al (1996) Secretion of tumour necrosis factor and lymphotoxin in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 43:456–463

    Article  CAS  PubMed  Google Scholar 

  3. Chang YH, Lin IL, Tsay GJ et al (2008) Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Biochem 41:955–959

    Article  CAS  PubMed  Google Scholar 

  4. Chen R, Fang M, Cai Q et al (2007) Tumor necrosis factor alpha- 308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China. Rheumatol Int 28:121–126

    Article  PubMed  Google Scholar 

  5. Choy EHS, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  CAS  PubMed  Google Scholar 

  6. Cimaz R, Cazalis MA, Reynaud C et al (2007) IL1 and TNF gene polymorphisms in patients with juvenile idiopathic arthritis treated with TNF inhibitors. Ann Rheum Dis 66:900–904

    Article  CAS  PubMed  Google Scholar 

  7. Cordiali-Fei P, Trento E, D'Agosto G et al (2007) Effective therapy with anti-TNF-alpha in patients with psoriatic arthritis is associated with decreased levels of metalloproteinases and angiogenic cytokines in the sera and skin lesions. Ann NY Acad Sci 1110:578–589

    Article  CAS  PubMed  Google Scholar 

  8. Danis VA, Millington M, Hyland V, Lawford R, Huang Q, Grennan D (1995) Increased frequency of the uncommon allele of a tumour necrosis factor alpha gene polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Dis Markers 12:127–133

    CAS  PubMed  Google Scholar 

  9. Date Y, Seki N, Kamizono S et al (1999) Basic science-identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5′-flanking region of the TNFa gene and HLA genes—this report describes the allele. Arthritis Rheum 42:2577–2582

    Article  CAS  PubMed  Google Scholar 

  10. De Benedetti F, Pignatti P, Gerloni V, Massa M, Sartirana P, Caporali R (1997) Differences in synovial fluid cytokine levels between juvenile and adult rheumatoid arthritis. J Rheumatol 24:1403–1407

    PubMed  Google Scholar 

  11. Demacq C, Vasconcellos VB, Marcaccini AM, Gerlach RF, Silva WA Jr, Tanus-Santos JE (2008) Functional polymorphisms in the promoter of the matrix metalloproteinase-9 (MMP-9) gene are not linked with significant plasma MMP-9 variations in healthy subjects. Clin Chem Lab Med 46:57–63

    Article  CAS  PubMed  Google Scholar 

  12. Fiedorczyk M, Klimiuk PA, Sierakowski S, Gindzienska-Sieskiewicz E, Chwiecko J (2006) Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with early rheumatoid arthritis. J Rheumatol 33:1523–1529

    CAS  PubMed  Google Scholar 

  13. Gattorno M, Picco P, Buoncompagni A et al (1996) Serum p 55 and p 75 tumour necrosis factor receptors as markers of disease activity in juvenile chronic arthritis. Ann Rheum Dis 55:243–247

    Article  CAS  PubMed  Google Scholar 

  14. Giannini EH, Ruperto N, Ravelli A, Lovell DJ, Felson DT, Martini A (1997) Preliminary definition of improvement in juvenile arthritis. Arthritis Rheum 40:1202–1209

    CAS  PubMed  Google Scholar 

  15. Gruber BL, Sorbi D, French DL et al (1996) Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clin Immunol Immunopathol 78:161–171

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Jeong JH, Jeon ST et al (2006) Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-{kappa} B activation in macrophages. Mol Pharmacol 69:1783–1790

    Article  CAS  PubMed  Google Scholar 

  17. Klimiuk PA, Sierakowski S, Latosiewicz R, Cylwik B, Skowronski J, Chwiecko J (2002) Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in different histological variants of rheumatoid synovitis. Rheumatology 41:78–87

    Article  CAS  PubMed  Google Scholar 

  18. Lianxu C, Hongti J, Changlong Y (2006) NF-Bp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis Cartilage 14:367–376

    Article  CAS  PubMed  Google Scholar 

  19. Louis E, Franchimont D, Piron A et al (1998) Tumour necrosis factor (TNF) gene polymorphism influences TNF-production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 113:401–406

    Article  CAS  PubMed  Google Scholar 

  20. Lovell DJ, Giannini EH, Reiff A et al (2000) Etanercept in children with polyarticular juvenile rheumatoid arthritis. N Engl J Med 342:763–769

    Article  CAS  PubMed  Google Scholar 

  21. Mangge H, Gallist S, Schauenstein K (1999) Long-term follow-up of cytokines and soluble cytokine receptors in peripheral blood of patients with juvenile rheumatoid arthritis. J Interferon Cytokine Res 19:1005–1010

    Article  CAS  PubMed  Google Scholar 

  22. Martínez A, Fernández-Arquero M, Pascual-Salcedo D et al (2000) Primary association of tumor necrosis factor-region genetic markers with susceptibility to rheumatoid arthritis. Arthritis Rheum 43:1366–1370

    Article  PubMed  Google Scholar 

  23. Ozen S, Alikasifoglu M, Bakkaloglu A et al (2002) Tumour necrosis factor alpha G- > A-238 and G- > A-308 polymorphisms in juvenile idiopathic arthritis. Rheumatology 41:223–227

    Article  CAS  PubMed  Google Scholar 

  24. Peake NJ, Foster HE, Khawaja K, Cawston TE, Rowan AD (2006) Assessment of the clinical significance of gelatinase activity in patients with juvenile idiopathic arthritis using quantitative protein substrate zymography. Ann Rheum Dis 65:501–507

    Article  CAS  PubMed  Google Scholar 

  25. Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392

    PubMed  Google Scholar 

  26. Rodríguez-Carreón AA, Zúñiga J, Hernández-Pacheco G et al (2005) Tumor necrosis factor-alpha −308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun 24:63–68

    Article  PubMed  Google Scholar 

  27. Rood MJ, van Krugten MV, Zanelli E et al (2000) TNF-308A and HLA-DR3 alleles contribute independently to susceptibility to systemic lupus erythematosus. Arthritis Rheum 43:129–134

    Article  CAS  PubMed  Google Scholar 

  28. Rooney M, Varsani H, Martin K, Lombard PR, Dayer JM, Woo P (2000) Tumour necrosis factor alpha and its soluble receptors in juvenile chronic arthritis. Rheumatology 39:432–438

    Article  CAS  PubMed  Google Scholar 

  29. Sandya S, Achan MA, Sudhakaran PR (2009) Multiple matrix metalloproteinases in type II collagen induced arthritis. Indian J Clin Biochem 24:42–48

    Article  CAS  Google Scholar 

  30. Schmeling H, Wagner U, Peterson A, Horneff G (2006) Tumor necrosis factor alpha promoter polymorphisms in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol 24:103–108

    CAS  PubMed  Google Scholar 

  31. Schmeling H, Horneff G (2007) Tumor necrosis factor alpha promoter polymorphisms and etanercept therapy in juvenile idiopathic arthritis. Rheumatol Int 27:383–386

    Article  CAS  PubMed  Google Scholar 

  32. Tchetverikov I, Ronday HK, Van El B et al (2004) MMP profile in paired serum and synovial fluid samples of patients with rheumatoid arthritis. Br Med J 63:881–883

    CAS  Google Scholar 

  33. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor promoter on transcriptional activation. Proc Natl Acad Sci USA 94:3195–3199

    Article  CAS  PubMed  Google Scholar 

  34. Xue M, March L, Sambrook PN, Jackson CJ (2007) Differential regulation of matrix metalloproteinase 2 and matrix metalloproteinase 9 by activated protein C: relevance to inflammation in rheumatoid arthritis. Arthritis Rheum 56:2864–2874

    Article  CAS  PubMed  Google Scholar 

  35. Yen JH, Chen CJ, Tsai WC et al (2001) Tumor necrosis factor promoter polymorphisms in patients with rheumatoid arthritis in Taiwan. J Rheumatol 28:1788–1792

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Ministry of Science of the Republic of Serbia (grant no. 145081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Basic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basic, J., Pavlovic, D., Jevtovic-Stoimenov, T. et al. Etanercept reduces matrix metalloproteinase-9 level in children with polyarticular juvenile idiopathic arthritis and TNF-α-308GG genotype. J Physiol Biochem 66, 173–180 (2010). https://doi.org/10.1007/s13105-010-0022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0022-x

Keywords

Navigation