Skip to main content

Advertisement

Log in

Effects of the New Thrombolytic Compound LT3001 on Acute Brain Tissue Damage After Focal Embolic Stroke in Rats

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

LT3001 is a novel synthetic small molecule with thrombolytic and free radical scavenging activities. In this study, we tested the effects of LT3001 as a potential alternative thrombolytic in focal embolic ischemic stroke rat model. Stroked rats received intravenous injection of 10 mg/kg LT3001 or tPA at 1.5, 3, or 4.5 h after stroke, respectively, and the outcomes were measured at different time points after stroke by performing multi-parametric MRI, 2,3,5-triphenyltetrazolium chloride (TTC) staining, and modified neurological severity score. Lastly, we assessed the effect of LT3001 on the tPA activity in vitro, the international normalized ratio (INR), and the serum levels of active tPA and plasminogen activator inhibitor-1 (PAI-1). LT3001 treated at 1.5 h after stroke is neuroprotective by reducing the CBF lesion size and lowering diffusion and T2 lesion size measured by MRI, which is consistent with the reduction in TTC-stained infarction. When treated at 3 h after stroke, LT3001 had significantly better therapeutic effects regarding reduction of infarct size, swelling rate, and hemorrhagic transformation compared to tPA. When treated at 4.5 h after stroke, tPA, but not LT3001, significantly increased brain swelling and intracerebral hemorrhagic transformation. Lastly, LT3001 did not interfere with tPA activity in vitro, or significantly alter the INR and serum levels of active tPA and PAI-1 in vivo. Our data suggests that LT3001 is neuroprotective in focal embolic stroke rat model. It might have thrombolytic property, not interfere with tPA/PAI-1 activity, and cause less risk of hemorrhagic transformation compared to the conventional tPA. Taken together, LT3001 might be developed as a novel therapy for treating thrombotic ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whiteley WN, et al. Targeting recombinant tissue-type plasminogen activator in acute ischemic stroke based on risk of intracranial hemorrhage or poor functional outcome: an analysis of the third international stroke trial. Stroke. 2014;45(4):1000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang SH, Liu R. Four decades of ischemic penumbra and its implication for ischemic stroke. Transl Stroke Res. 2021;12(6):937–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liberatore GT, et al. Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration. Stroke. 2003;34(2):537–43.

    Article  CAS  PubMed  Google Scholar 

  4. Kaur J, et al. The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab. 2004;24(9):945–63.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Y, et al. Diabetes mellitus/poststroke hyperglycemia: a detrimental factor for tPA thrombolytic stroke therapy. Transl Stroke Res. 2021;12(3):416–27.

    Article  PubMed  Google Scholar 

  6. Armstead WM, et al. Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J Cereb Blood Flow Metab. 2009;29(8):1463–74.

    Article  CAS  PubMed  Google Scholar 

  7. Nassar T, et al. In vitro and in vivo effects of tPA and PAI-1 on blood vessel tone. Blood. 2004;103(3):897–902.

    Article  CAS  PubMed  Google Scholar 

  8. Nicole O, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 2003;9(10):1313–7.

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004;35(11 Suppl 1):2726–30.

    Article  CAS  PubMed  Google Scholar 

  11. Benchenane K, et al. Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends Neurosci. 2004;27(3):155–60.

    Article  CAS  PubMed  Google Scholar 

  12. Zeevi N, et al. Acute stroke management in the elderly. Cerebrovasc Dis. 2007;23(4):304–8.

    Article  PubMed  Google Scholar 

  13. Yepes M, et al. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  14. Akhtar N, Deleu D, Kamran S. Haematologic disorders and cerebral venous thrombosis. J Pak Med Assoc. 2006;56(11):498–501.

    PubMed  Google Scholar 

  15. Ginsberg MD. Expanding the concept of neuroprotection for acute ischemic stroke: the pivotal roles of reperfusion and the collateral circulation. Prog Neurobiol. 2016;145–146:46–77.

    Article  PubMed  Google Scholar 

  16. Goyal M, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

    Article  PubMed  Google Scholar 

  17. Savitz SI, et al. Reconsidering neuroprotection in the reperfusion era. Stroke. 2017;48(12):3413–9.

    Article  PubMed  Google Scholar 

  18. Chamorro A. Neuroprotectants in the era of reperfusion therapy. J Stroke. 2018;20(2):197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, et al. Therapeutic role of a cysteine precursor, OTC, in ischemic stroke is mediated by improved proteostasis in mice. Transl Stroke Res. 2020;11(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  20. Taskiran-Sag A, et al. Improving microcirculatory reperfusion reduces parenchymal oxygen radical formation and provides neuroprotection. Stroke. 2018;49(5):1267–75.

    Article  CAS  PubMed  Google Scholar 

  21. Chamorro A, et al. Uric acid therapy improves the outcomes of stroke patients treated with intravenous tissue plasminogen activator and mechanical thrombectomy. Int J Stroke. 2017;12(4):377–82.

    Article  PubMed  Google Scholar 

  22. Amaro S, et al. Uric acid therapy prevents early ischemic stroke progression: a tertiary analysis of the URICO-ICTUS Trial (Efficacy Study of Combined Treatment With Uric Acid and r-tPA in Acute Ischemic Stroke). Stroke. 2016;47(11):2874–6.

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi T, et al. Edaravone with and without .6 Mg/Kg alteplase within 4.5 hours after ischemic stroke: a prospective cohort study (PROTECT4.5). J Stroke Cerebrovasc Dis. 2017;26(4):756–65.

    Article  PubMed  Google Scholar 

  24. Wang X, Rosell A, Lo EH. Targeting extracellular matrix proteolysis for hemorrhagic complications of tPA stroke therapy. CNS Neurol Disord: Drug Targets. 2008;7(3):235–42.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao M, et al. The composition and sequence specificity of Pro-Ala-Lys-OH for the thrombolytic activities of P6A and related oligopeptides. Bioorg Med Chem. 2004;12(9):2275–86.

    Article  CAS  PubMed  Google Scholar 

  26. Fan X, et al. Annexin A2 plus low-dose tissue plasminogen activator combination attenuates cerebrovascular dysfunction after focal embolic stroke of rats. Transl Stroke Res. 2017;8(6):549–59.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, et al. Dynamic detection of thrombolysis in embolic stroke rats by synchrotron radiation angiography. Transl Stroke Res. 2019;10(6):695–704.

    Article  CAS  PubMed  Google Scholar 

  28. Matur AV, et al. Translating animal models of ischemic stroke to the human condition. Transl Stroke Res. 2022. https://doi.org/10.1007/s12975-022-01082-9.

  29. Korninger C, Collen D. Studies on the specific fibrinolytic effect of human extrinsic (tissue-type) plasminogen activator in human blood and in various animal species in vitro. Thromb Haemost. 1981;46(2):561–5.

    Article  CAS  PubMed  Google Scholar 

  30. Fisher M, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke: J Cereb Circ. 2009;40(6):2244–50.

    Article  Google Scholar 

  31. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85.

    Article  PubMed  Google Scholar 

  32. Jiang Y, et al. Low dose tPA plus annexin A2 combination attenuates tPA delayed treatment-associated hemorrhage and improves recovery in rat embolic focal stroke. Neurosci Lett. 2015;602:73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang R, et al. Three days delayed recanalization improved neurological function in pMCAO rats by increasing M2 microglia-possible involvement of the IL-4R/STAT6/PPARgamma pathway. Transl Stroke Res. 2022. https://doi.org/10.1007/s12975-022-01032-5.

  34. Mori S, van Zijl PCM. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med. 1995;33:41–52.

    Article  CAS  PubMed  Google Scholar 

  35. Ji Y, et al. In vivo microscopic diffusional kurtosis imaging with symmetrized double diffusion encoding EPI. Magn Reson Med. 2019;81(1):533–41.

    Article  PubMed  Google Scholar 

  36. Cheung JS, et al. Fast radio-frequency enforced steady state (FRESS) spin echo MRI for quantitative T2 mapping: minimizing the apparent repetition time (TR) dependence for fast T2 measurement. NMR Biomed. 2012;25(2):189–94.

    Article  PubMed  Google Scholar 

  37. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998;208(2):410–6.

    Article  CAS  PubMed  Google Scholar 

  38. Ji Y, et al. Development of fast multi-slice apparent T1 mapping for improved arterial spin labeling MRI measurement of cerebral blood flow. Magn Reson Med. 2021;85(3):1571–80.

    Article  PubMed  Google Scholar 

  39. Williams DS, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89(1):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juang L-H, Wu M-N. MRI brain lesion image detection based on color-converted K-means clustering segmentation. Measurement. 2010;43(7):941–9.

    Article  Google Scholar 

  41. Nalamolu KR, et al. Attenuation of the induction of TLRs 2 and 4 mitigates inflammation and promotes neurological recovery after focal cerebral ischemia. Transl Stroke Res. 2021;12(5):923–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelly-Cobbs AI, et al. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2013;304(6):H806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan X, et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke: J Cereb Circ. 2012;43(2):567–70.

    Article  CAS  Google Scholar 

  44. Zhu H, et al. Annexin A2 combined with low-dose tPA improves thrombolytic therapy in a rat model of focal embolic stroke. J Cereb Blood Flow Metab. 2010;30(6):1137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu H, et al. Annexin A2 combined with low-dose tPA improves thrombolytic therapy in a rat model of focal embolic stroke. J Cereb Blood Flow Metab. 2010;30(6):1137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun L, et al. Anticoagulation with dabigatran does not increase secondary intracerebral haemorrhage after thrombolysis in experimental cerebral ischaemia. Thromb Haemost. 2013;110(1):153–61.

    CAS  PubMed  Google Scholar 

  47. Tjarnlund-Wolf A, et al. Plasminogen activator inhibitor-1 and thrombotic cerebrovascular diseases. Stroke. 2012;43(10):2833–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Etherton MR, et al. Neuroimaging paradigms to identify patients for reperfusion therapy in stroke of unknown onset. Front Neurol. 2018;9:327.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zerna C, et al. Current practice and future directions in the diagnosis and acute treatment of ischaemic stroke. Lancet. 2018;392(10154):1247–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Klaus van Leyen for constructive criticism of the manuscript.

Funding

This work was supported by a sponsored research contract from the Lumosa Therapeutics Co. Ltd. (Taipei City, Taiwan).

All experiments were performed following protocols approved by Massachusetts General Hospital Institutional Animal Care and Use Committee in compliance with the NIH Guide for the Care and Use of Laboratory Animals.

Author information

Authors and Affiliations

Authors

Contributions

Y.H.J. performed animal models and behavioral assessments. Y.H.J and N.L. performed histological and biochemical assays. Y.J. and I.Y.Z. performed the imaging assessment and data quantification. Y.H.J. wrote the main manuscript text and prepared all figures. P.Z.S., M.N., A.S.D., and X.W. modified and refined the manuscript by providing professional suggestions. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yinghua Jiang or Xiaoying Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests. LT3001 was provided from the Lumosa Therapeutics Co. Ltd, Taiwan (licensed by the USA patent-US2016/0083423A1).

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Ji, Y., Zhou, I.Y. et al. Effects of the New Thrombolytic Compound LT3001 on Acute Brain Tissue Damage After Focal Embolic Stroke in Rats. Transl. Stroke Res. 15, 30–40 (2024). https://doi.org/10.1007/s12975-022-01107-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01107-3

Keywords

Navigation