Skip to main content

Advertisement

Log in

Optical Coherence Tomography in Cerebrovascular Disease: Open up New Horizons

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT), based on the backscattering or reflection of near-infrared light, enables an ultra-high resolution of up to 10 μm. The successful application of OCT in coronary artery diseases has sparked increasing interest in its implementation in cerebrovascular diseases. OCT has shown promising potential in the atherosclerotic plaque structure characterization, plaque rupture risk stratification, pre-stenting and post-stenting evaluation, and long-term follow-up in extracranial and intracranial atherosclerotic stenosis (ICAS). In hemorrhagic cerebrovascular diseases, OCT plays an important role in the structure evaluation, rupture risk stratification, and healing and occlusion evaluation following initial treatment in intracranial aneurysms (IAs). In this study, we summarized the applications of OCT in the diagnosis, treatment, and follow-up of cerebrovascular diseases, especially in ICAS and IAs. The current limitations and future directions of OCT in the endovascular treatment of cerebrovascular diseases were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data included in this work are available publicly.

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18(21):1864–6.

    Article  CAS  PubMed  Google Scholar 

  3. Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet. 2017;390(10096):793–809.

    Article  PubMed  Google Scholar 

  4. Rico-Jimenez JJ, Campos-Delgado DU, Buja LM, Vela D, Jo JA. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques. Atherosclerosis. 2019;290:94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boi A, Jamthikar AD, Saba L, Gupta D, Sharma A, Loi B, et al. A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography. Curr Atheroscler Rep. 2018;20(7):33.

    Article  PubMed  Google Scholar 

  6. Feske SK. Ischemic Stroke. Am J Med. 2021;134(12):1457–64.

    Article  PubMed  Google Scholar 

  7. Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology. 2013;40(1):36–41.

    Article  PubMed  Google Scholar 

  8. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528.

    Article  PubMed  Google Scholar 

  9. Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, et al. Optical coherence tomography for optical biopsy Properties and demonstration of vascular pathology. Circulation. 1996;93(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  10. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106(13):1640–5.

    Article  PubMed  Google Scholar 

  11. Prabhudesai V, Phelan C, Yang Y, Wang RK, Cowling MG. The potential role of optical coherence tomography in the evaluation of vulnerable carotid atheromatous plaques: a pilot study. Cardiovasc Intervent Radiol. 2006;29(6):1039–45.

    Article  PubMed  Google Scholar 

  12. Ghosn MG, Mashiatulla M, Syed SH, Mohamed MA, Larin KV, Morrisett JD. Permeation of human plasma lipoproteins in human carotid endarterectomy tissues: measurement by optical coherence tomography. J Lipid Res. 2011;52(7):1429–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zimarino M, Prati F, Stabile E, Pizzicannella J, Fouad T, Filippini A, et al. Optical coherence tomography accurately identifies intermediate atherosclerotic lesions–an in vivo evaluation in the rabbit carotid artery. Atherosclerosis. 2007;193(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura S, Kawasaki M, Hattori A, Nishigaki K, Minatoguchi S, Iwama T. Demonstration of intraluminal thrombus in the carotid artery by optical coherence tomography: technical case report. Neurosurgery. 2010;67(3 Suppl Operative):onsE305; discussion onsE

  15. Kawasaki M, Yoshimura S, Yamada K, Hattori A, Ishihara Y, Nishigaki K, et al. Carotid artery OCT in cerebral infarction. JACC Cardiovasc Imaging. 2013;6(11):1215–6.

    Article  PubMed  Google Scholar 

  16. Saba L, Saam T, Jäger HR, Yuan C, Hatsukami TS, Saloner D, et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk prediction and their potential clinical implications. Lancet Neurol. 2019;18(6):559–72.

    Article  PubMed  Google Scholar 

  17. Li ZY, Howarth SP, Tang T, Gillard JH. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model Stroke. 2006;37(5):1195–9.

    PubMed  Google Scholar 

  18. Cilingiroglu M, Hakeem A, Feldman M, Wholey M. Optical coherence tomography imaging in asymptomatic patients with carotid artery stenosis. Cardiovasc Revasc Med. 2013;14(1):53–6.

    Article  PubMed  Google Scholar 

  19. Shindo S, Fujii K, Shirakawa M, Uchida K, Enomoto Y, Iwama T, et al. Morphologic features of carotid plaque rupture assessed by optical coherence tomography. AJNR Am J Neuroradiol. 2015;36(11):2140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi X, Han Y, Li M, Yin Q, Liu R, Wang F, et al. Superficial calcification with rotund shape is associated with carotid plaque rupture: an optical coherence tomography study. Front Neurol. 2020;11:563334.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jones MR, Attizzani GF, Given CA 2nd, Brooks WH, Ganocy SJ, Ramsey CN, et al. Intravascular frequency-domain optical coherence tomography assessment of carotid artery disease in symptomatic and asymptomatic patients. JACC Cardiovasc Interv. 2014;7(6):674–84.

    Article  PubMed  Google Scholar 

  22. Yang Q, Guo H, Shi X, Xu X, Zha M, Cai H, et al. Identification of symptomatic carotid artery plaque: a three-item scale combined angiography with optical coherence tomography. Front Neurosci. 2021;15:792437.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bosiers M, de Donato G, Deloose K, Verbist J, Peeters P, Castriota F, et al. Does free cell area influence the outcome in carotid artery stenting? Eur J Vasc Endovasc Surg. 2007;33(2):135–41 (discussion 42-3).

    Article  CAS  PubMed  Google Scholar 

  24. Harada K, Oshikata S, Kajihara M. Optical coherence tomography evaluation of tissue prolapse after carotid artery stenting using closed cell design stents for unstable plaque. J Neurointerv Surg. 2018;10(3):229–34.

    Article  PubMed  Google Scholar 

  25. Harada K, Kajihara M, Sankoda Y, Taniguchi S. Efficacy of post-dilatation during carotid artery stenting for unstable plaque using closed-cell design stent evaluated by optical coherence tomography. J Neuroradiol. 2019;46(6):384–9.

    Article  PubMed  Google Scholar 

  26. de Donato G, Setacci F, Sirignano P, Galzerano G, Cappelli A, Setacci C. Optical coherence tomography after carotid stenting: rate of stent malapposition, plaque prolapse and fibrous cap rupture according to stent design. Eur J Vasc Endovasc Surg. 2013;45(6):579–87.

    Article  PubMed  Google Scholar 

  27. Umemoto T, de Donato G, Pacchioni A, Reimers B, Ferrante G, Isobe M, et al. Optical coherence tomography assessment of newgeneration mesh-covered stents after carotid stenting. EuroIntervention. 2017;13(11):1347–54.

    Article  PubMed  Google Scholar 

  28. Prati F, Zimarino M, Stabile E, Pizzicannella G, Fouad T, Rabozzi R, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94(2):217–21.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura S, Kawasaki M, Yamada K, Hattori A, Nishigaki K, Minatoguchi S, et al. OCT of human carotid arterial plaques. JACC Cardiovasc Imaging. 2011;4(4):432–6.

    Article  PubMed  Google Scholar 

  30. Pasarikovski CR, Ramjist J, da Costa L, Black SE, Cardinell J, Yang VX. Optical coherence tomography as an adjunct during carotid artery stenting for carotid atherosclerotic disease. Clin Neuroradiol. 2020;30(3):503–9.

    Article  PubMed  Google Scholar 

  31. Liu R, Jiang Y, Xiong Y, Li M, Ma M, Zhu W, et al. An optical coherence tomography assessment of stent strut apposition based on the presence of lipid-rich plaque in the carotid artery. J Endovasc Ther. 2015;22(6):942–9.

    Article  PubMed  Google Scholar 

  32. Farb A, Burke AP, Kolodgie FD, Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation. 2003;108(14):1701–6.

    Article  PubMed  Google Scholar 

  33. Yan L, Dmytriw AA, Yang B, Jiao L. Optical coherence tomography of plaque erosion and thrombus in severe vertebral artery stenosis. Diagnostics (Basel). 2021;11(4):638.

  34. Liu R, Yin Q, Li M, Ye R, Zhu W, Liu X. Diagnosis and treatment evaluation of in-stent restenosis of carotid artery stenting using optical coherence tomography. Neurology. 2019;92(2):99–100.

    Article  PubMed  Google Scholar 

  35. Blackham KA, Kim BS, Jung RS, Badve C, Manjila S, Sila CA, et al. In vivo characterization of carotid neointimal hyperplasia by use of optical coherence tomography: before and after cutting balloon angioplasty. J Neuroimaging. 2015;25(6):1044–6.

    Article  PubMed  Google Scholar 

  36. Matsumoto H, Yako R, Masuo O, Hirayama K, Uematsu Y, Nakao N. A case of in-stent neoatherosclerosis 10 years after carotid artery stent implantation: observation with optical coherence tomography and plaque histological findings. Neurol Med Chir (Tokyo). 2014;54(2):139–44.

    Article  PubMed  Google Scholar 

  37. Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol. 2003;41(4 Suppl S):15s-22s

  38. de Havenon A, Mossa-Basha M, Shah L, Kim SE, Park M, Parker D, et al. High-resolution vessel wall MRI for the evaluation of intracranial atherosclerotic disease. Neuroradiology. 2017;59(12):1193–202.

    Article  PubMed  Google Scholar 

  39. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.

    Article  PubMed  Google Scholar 

  40. Mathews MS, Su J, Heidari E, Levy EI, Linskey ME, Chen Z. Neuroendovascular optical coherence tomography imaging and histological analysis. Neurosurgery. 2011;69(2):430–9.

    Article  PubMed  Google Scholar 

  41. Feng Y, Wu T, Wang T, Li Y, Li M, Li L, et al. Correlation between intracranial vertebral artery stenosis diameter measured by digital subtraction angiography and cross-sectional area measured by optical coherence tomography. J Neurointerv Surg. 2021;13(11):1002–6.

    Article  PubMed  Google Scholar 

  42. Benes V, Netuka D, Mandys V, Vrabec M, Mohapl M, Benes V Jr, et al. Comparison between degree of carotid stenosis observed at angiography and in histological examination. Acta Neurochir (Wien). 2004;146(7):671–7.

    Article  CAS  PubMed  Google Scholar 

  43. Given CA 2nd, Ramsey CN 3rd, Attizzani GF, Jones MR, Brooks WH, Bezerra HG, et al. Optical coherence tomography of the intracranial vasculature and Wingspan stent in a patient. J Neurointerv Surg. 2015;7(6):e22.

    Article  PubMed  Google Scholar 

  44. Ughi GJ, Marosfoi MG, King RM, Caroff J, Peterson LM, Duncan BH, et al. A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy. Nat Commun. 2020;11(1):3851.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu X, Li M, Liu R, Yin Q, Shi X, Wang F, et al. Optical coherence tomography evaluation of vertebrobasilar artery stenosis: case series and literature review. J Neurointerv Surg. 2020;12(8):809–13.

    Article  PubMed  Google Scholar 

  46. Li L, Dmytriw AA, Krings T, Feng Y, Jiao L. Visualization of the human intracranial vasa vasorum in vivo using optical coherence tomography. JAMA Neurol. 2020;77(7):903–5.

    Article  PubMed  Google Scholar 

  47. Yang B, Feng Y, Ma Y, Wang Y, Chen J, Li L, et al. Frequency-domain optical coherence tomography for intracranial atherosclerotic stenosis: feasibility, safety, and preliminary experience. Front Neurol. 2021;12:678443.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu R, Yang B, Li L, Wang T, Lu X, Luo J, et al. Macrocalcification of intracranial vertebral artery may be related to in-stent restenosis: lessons learned from optical coherence tomography. J Neurointerv Surg. 2022;14(5):neurintsurg-2021-017913.

  49. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  50. Bamford J, Dennis M, Sandercock P, Burn J, Warlow C. The frequency, causes and timing of death within 30 days of a first stroke: the Oxfordshire Community Stroke Project. J Neurol Neurosurg Psychiatry. 1990;53(10):824–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Goulart AC, Bensenor IM, Fernandes TG, Alencar AP, Fedeli LM, Lotufo PA. Early and one-year stroke case fatality in Sao Paulo, Brazil: applying the World Health Organization’s stroke STEPS. J Stroke Cerebrovasc Dis. 2012;21(8):832–8.

    Article  PubMed  Google Scholar 

  52. Lawton MT, Vates GE. Subarachnoid hemorrhage. N Engl J Med. 2017;377(3):257–66.

    Article  PubMed  Google Scholar 

  53. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–36.

    Article  PubMed  Google Scholar 

  54. Greving JP, Wermer MJ, Brown RD Jr, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.

    Article  PubMed  Google Scholar 

  55. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42.

    Article  PubMed  Google Scholar 

  56. Hoffmann T, Glaßer S, Boese A, Brandstädter K, Kalinski T, Beuing O, et al. Experimental investigation of intravascular OCT for imaging of intracranial aneurysms. Int J Comput Assist Radiol Surg. 2016;11(2):231–41.

    Article  PubMed  Google Scholar 

  57. Liu Y, Zheng Y, An Q, Song Y, Leng B. Optical coherence tomography for intracranial aneurysms: a new method for assessing the aneurysm structure. World Neurosurg. 2019;123:e194–201.

    Article  PubMed  Google Scholar 

  58. Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35(10):2287–93.

    Article  PubMed  Google Scholar 

  59. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30(7):1396–401.

    Article  CAS  PubMed  Google Scholar 

  60. Thorell WE, Chow MM, Prayson RA, Shure MA, Jeon SW, Huang D, et al. Optical coherence tomography: a new method to assess aneurysm healing. J Neurosurg. 2005;102(2):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Su J, Mathews MS, Nwagwu CI, Edris A, Nguyen BV, Heidari M, et al. Imaging of treated brain aneurysms in vivo using optical coherence tomorgraphy. Proc SPIE. 2008;6847(8). https://doi.org/10.1117/12.766657.

  62. King RM, Marosfoi M, Caroff J, Ughi GJ, Groth DM, Gounis MJ, et al. High frequency optical coherence tomography assessment of homogenous neck coverage by intrasaccular devices predicts successful aneurysm occlusion. J Neurointerv Surg. 2019;11(11):1150–4.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vardar Z, King RM, Kraitem A, Langan ET, Peterson LM, Duncan BH, et al. High-resolution image-guided WEB aneurysm embolization by high-frequency optical coherence tomography. J Neurointerv Surg. 2021;13(7):669–73.

    Article  PubMed  Google Scholar 

  64. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  65. van der Marel K, Gounis MJ, Weaver JP, de Korte AM, King RM, Arends JM, et al. Grading of Regional Apposition after Flow-Diverter Treatment (GRAFT): a comparative evaluation of VasoCT and intravascular OCT. J Neurointerv Surg. 2016;8(8):847–52.

    Article  PubMed  Google Scholar 

  66. Matsuda Y, Chung J, Lopes DK. Analysis of neointima development in flow diverters using optical coherence tomography imaging. J Neurointerv Surg. 2018;10(2):162–7.

    Article  PubMed  Google Scholar 

  67. King RM, Brooks OW, Langan ET, Caroff J, Clarençon F, Tamura T, et al. Communicating malapposition of flow diverters assessed with optical coherence tomography correlates with delayed aneurysm occlusion. J Neurointerv Surg. 2018;10(7):693–7.

    Article  PubMed  Google Scholar 

  68. Guerrero BP, Pacheco CD, Saied A, Joshi K, Rodríguez C, Martínez-Galdámez M, et al. First human evaluation of endothelial healing after a pipeline flex embolization device with shield technology implanted in posterior circulation using optical coherence tomography. Neurointervention. 2018;13(2):129–32.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martínez-Galdámez M, Escartín J, Pabón B, Diaz C, Martín-Reyes R, Hermosín A, et al. Optical coherence tomography: translation from 3D-printed vascular models of the anterior cerebral circulation to the first human images of implanted surface modified flow diverters. Interv Neuroradiol. 2019;25(2):150–6.

    Article  PubMed  Google Scholar 

  70. Pasarikovski CR, da Costa L, Pereira VM, Ramjist J, Dobashi Y, Yang VXD. Optical coherence tomography-guided flow diversion for aneurysmal treatment. Neurol Clin Pract. 2020;10(4):e30–2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li L, Yongjie M, Dmytriw AA, Jian R, Hongqi Z. Evaluation of vessel wall apposition for stent-assisted coiling in treatment of vertebral artery aneurysms using optical coherence tomography. Clin Neuroradiol. 2021. https://doi.org/10.1007/s00062-021-01070-w.

  72. Monteiro A, Lopes DK, Aghaebrahim A, Hanel R. Optical coherence tomography for elucidation of flow-diversion phenomena: the concept of endothelized mural thrombus behind reversible in-stent stenosis in flow-diverters. Interv Neuroradiol. 2021;27(6):774–80.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fries F, Maßmann A, Tomori T, Yilmaz U, Kettner M, Simgen A, et al. Accuracy of optical coherence tomography imaging in assessing aneurysmal remnants after flow diversion. J Neurointerv Surg. 2020;12(12):1242–6.

    PubMed  Google Scholar 

  74. Jones MR, Attizzani GF, Given CA 2nd, Brooks WH, Costa MA, Bezerra HG. Intravascular frequency-domain optical coherence tomography assessment of atherosclerosis and stent-vessel interactions in human carotid arteries. AJNR Am J Neuroradiol. 2012;33(8):1494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasarikovski CR, Ramjist J, da Costa L, Black SE, Yang V. Optical coherence tomography imaging after endovascular thrombectomy for basilar artery occlusion: report of 3 cases. J Neurosurg. 2019;133(4):1141–6.

  76. Griessenauer CJ, Gupta R, Shi S, Alturki A, Motiei-Langroudi R, Adeeb N, et al. Collar sign in incompletely occluded aneurysms after pipeline embolization: evaluation with angiography and optical coherence tomography. AJNR Am J Neuroradiol. 2017;38(2):323–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Given CA 2nd, Attizzani GF, Jones MR, Ramsey CN 3rd, Brooks WH, Costa MA, et al. Frequency-domain optical coherence tomography assessment of human carotid atherosclerosis using saline flush for blood clearance without balloon occlusion. AJNR Am J Neuroradiol. 2013;34(7):1414–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yoshimura S, Kawasaki M, Yamada K, Enomoto Y, Egashira Y, Hattori A, et al. Visualization of internal carotid artery atherosclerotic plaques in symptomatic and asymptomatic patients: a comparison of optical coherence tomography and intravascular ultrasound. AJNR Am J Neuroradiol. 2012;33(2):308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Secco GG, Cremonesi A, Amor M, Pistis G, Reimers B, Castriota F. Optical coherence tomography during carotid artery stenting: a new niche application? Int J Cardiol. 2015;187:372–3.

    Article  PubMed  Google Scholar 

  80. de Donato G, Setacci C. New frontiers in the feasibility of optical coherence tomography in carotid arteries. AJNR Am J Neuroradiol. 2013;34(7):1419–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bezerra HG, Tahara S, Parikh SA, Costa MA. “Old” problems revisited; imaging the coronary in high resolution. EuroIntervention. 2009;5(5):523–5.

    Article  PubMed  Google Scholar 

  82. He C, Li Z, Wang J, Huang Y, Yin Y, Li Z. Atherosclerotic plaque tissue characterization: an OCT-based machine learning algorithm with ex vivo validation. Front Bioeng Biotechnol. 2020;8:749.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gessert N, Lutz M, Heyder M, Latus S, Leistner DM, Abdelwahed YS, et al. Automatic plaque detection in IVOCT pullbacks using convolutional neural networks. IEEE Trans Med Imaging. 2019;38(2):426–34.

    Article  PubMed  Google Scholar 

  84. Abdolmanafi A, Duong L, Dahdah N, Adib IR, Cheriet F. Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomed Opt Express. 2018;9(10):4936–60.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Abdolmanafi A, Duong L, Dahdah N, Cheriet F. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express. 2017;8(2):1203–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Beijing Scientific and Technologic Project (Z201100005520019) and Xuanwu Hospital Science Program for Fostering Young Scholars (QNPY2020010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yang or Liqun Jiao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Zhao, Q., Wang, T. et al. Optical Coherence Tomography in Cerebrovascular Disease: Open up New Horizons. Transl. Stroke Res. 14, 137–145 (2023). https://doi.org/10.1007/s12975-022-01023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01023-6

Keywords

Navigation