Skip to main content

Advertisement

Log in

Impact of Electronic Cigarette Vaping on Cerebral Ischemia: What We Know So Far

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Electronic cigarettes (ECs) are battery-powered nicotine delivery devices that have rapidly gained popularity and attention globally. ECs work by heating a liquid to produce an aerosol that usually contains nicotine, flavoring compounds, and other chemicals, which are inhaled during vaping. EC aerosols are depicted to contain a lower number and overall quantity of harmful toxicants than conventional cigarettes (CCs). However, emerging research indicates that EC aerosols contain harmful ingredients including ultrafine particles, volatile organic compounds, and heavy metals. One common ingredient found in both CCs and ECs is nicotine, which has been shown to be both highly addictive and toxic. Particularly relevant to our current review, there is an enormous amount of literature that shows that smoking-derived nicotine exacerbates ischemic brain damage. Therefore, the question arises: will EC use impact the outcome of stroke? ECs are highly popular and relatively new in the market; thus, our understanding about the long-term effects of EC use on brain are lacking. The current review strives to extrapolate the existing understanding of the nicotine-induced effects of conventional smoking on the brain to the possible effects that ECs may have on the brain, which may ultimately have a potential for adverse stroke risk or severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Leppert MH, Ho PM, Burke J, Madsen TE, Kleindorfer D, Sillau S, et al. Young women had more strokes than young men in a large. United States claims sample Stroke. 2020;51(11):3352–5.

    PubMed  Google Scholar 

  2. Loraine A. West SC, Daniel Goodkind, and Wan He. 65+ in the United States: 2010. Current Population Reports. 2014(Issued June 2014):P23–212.

  3. Girijala RL, Sohrabji F, Bush RL. Sex differences in stroke: review of current knowledge and evidence. Vasc Med. 2017;22(2):135–45.

    Article  PubMed  Google Scholar 

  4. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360.

    Google Scholar 

  5. Shah RS, Cole JW. Smoking and stroke: the more you smoke the more you stroke. Expert Rev Cardiovasc Ther. 2010;8(7):917–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frank JA, Swafford KJ, Roberts JM, Trout AL, Stowe AM, Lukins DE, et al. Smoking-induced sex differences in clinical outcomes in patients undergoing mechanical thrombectomy for stroke. World Neurosurg. 2021.

  7. Kurth T, Kase CS, Berger K, Gaziano JM, Cook NR, Buring JE. Smoking and risk of hemorrhagic stroke in women. Stroke. 2003;34(12):2792–5.

    Article  PubMed  Google Scholar 

  8. Zhu D, Chung HF, Pandeya N, Dobson AJ, Cade JE, Greenwood DC, et al. Relationships between intensity, duration, cumulative dose, and timing of smoking with age at menopause: a pooled analysis of individual data from 17 observational studies. PLoS Med. 2018;15(11):e1002704.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raval AP. Nicotine addiction causes unique detrimental effects on women’s brains. J Addict Dis. 2011;30(2):149–58.

    Article  PubMed  Google Scholar 

  10. U.S. Department of Health and Human Services CfDCaPaNIoH, National Cancer Institute. Smokeless tobacco and public health: a global perspective. 2014.

  11. Jarmul S, Aherrera A, Rule AM, Olmedo P, Chen R, Navas-Acien A. Lost in E-cigarette clouds: a culture on the rise. Am J Public Health. 2017;107(2):265–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drummond MB, Upson D. Electronic cigarettes. Potential harms and benefits. Ann Am Thorac Soc. 2014;11(2):236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sears CG, Walker KL, Hart JL, Lee AS, Siu A, Smith C. Clean, cheap, convenient: promotion of electronic cigarettes on YouTube. Tob Prev Cessat. 2017;3.

  14. Pearson JL, Richardson A, Niaura RS, Vallone DM, Abrams DB. e-Cigarette awareness, use, and harm perceptions in US adults. Am J Public Health. 2012;102(9):1758–66.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee AS, Hart JL, Sears CG, Walker KL, Siu A, Smith C. A picture is worth a thousand words: electronic cigarette content on Instagram and Pinterest. Tob Prev Cessat. 2017;3.

  16. Wang TW, Asman K, Gentzke AS, Cullen KA, Holder-Hayes E, Reyes-Guzman C, et al. Tobacco product use among adults—United States, 2017. MMWR Morb Mortal Wkly Rep. 2018;67(44):1225–32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cornelius ME WT, Jamal A, Loretan CG, Neff LJ. Tobacco product use among adults—United States, 2019. MMWR Morb Mortal Wkly Rep. 2020.

  18. Jerzynski T, Stimson GV, Shapiro H, Krol G. Estimation of the global number of e-cigarette users in 2020. Harm Reduct J. 2021;18(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prevention CfDCa. Outbreak of lung injury associated with the use of E-cigarette, or vaping, Products. 2020.

  20. Grana RA, Popova L, Ling PM. A longitudinal analysis of electronic cigarette use and smoking cessation. JAMA Intern Med. 2014;174(5):812–3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hadwiger ME, Trehy ML, Ye W, Moore T, Allgire J, Westenberger B. Identification of amino-tadalafil and rimonabant in electronic cigarette products using high pressure liquid chromatography with diode array and tandem mass spectrometric detection. J Chromatogr A. 2010;1217(48):7547–55.

    Article  CAS  PubMed  Google Scholar 

  22. Bauld L, MacKintosh AM, Eastwood B, Ford A, Moore G, Dockrell M, et al. Young people’s use of E-cigarettes across the United Kingdom: findings from five surveys 2015–2017. Int J Environ Res Public Health. 2017;14(9).

  23. Chang H-C, Tsai Y-W, Shiu M-N, Wang Y-T, Chang P-Y. Elucidating challenges that electronic cigarettes pose to tobacco control in Asia: a population-based national survey in Taiwan. BMJ Open. 2017;7(3):e014263.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Society for Adolescent Health and Medicine. Protecting youth from the risks of electronic cigarettes. J Adolesc Health. 2020;66(1):127–31.

  25. Paulson JR, Yang T, Selvaraj PK, Mdzinarishvili A, Van der Schyf CJ, Klein J, et al. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther. 2010;332(2):371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah KK, Boreddy PR, Abbruscato TJ. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood-brain barrier in mice. Fluids Barriers CNS. 2015;12:10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. d'Adesky ND, de Rivero Vaccari JP, Bhattacharya P, Schatz M, Perez-Pinzon MA, Bramlett HM, et al. Nicotine alters estrogen receptor-beta-regulated inflammasome activity and exacerbates ischemic brain damage in female rats. Int J Mol Sci. 2018;19(5).

  28. Diaz F, Raval AP. Simultaneous nicotine and oral contraceptive exposure alters brain energy metabolism and exacerbates ischemic stroke injury in female rats. J Cereb Blood Flow Metab. 2021;41(4):793–804.

    Article  CAS  PubMed  Google Scholar 

  29. Gee KW, Olincy A, Kanner R, Johnson L, Hogenkamp D, Harris J, et al. First in human trial of a type I positive allosteric modulator of alpha7-nicotinic acetylcholine receptors: pharmacokinetics, safety, and evidence for neurocognitive effect of AVL-3288. J Psychopharmacol. 2017;31(4):434–41.

    Article  CAS  PubMed  Google Scholar 

  30. Wallace TL, Porter RH. Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol. 2011;82(8):891–903.

    Article  CAS  PubMed  Google Scholar 

  31. Preskorn SH, Gawryl M, Dgetluck N, Palfreyman M, Bauer LO, Hilt DC. Normalizing effects of EVP-6124, an alpha-7 nicotinic partial agonist, on event-related potentials and cognition: a proof of concept, randomized trial in patients with schizophrenia. J Psychiatr Pract. 2014;20(1):12–24.

    Article  PubMed  Google Scholar 

  32. Borlongan CV, Shytle RD, Ross SD, Shimizu T, Freeman TB, Cahill DW, et al. (-)-nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol. 1995;136(2):261–5.

    Article  CAS  PubMed  Google Scholar 

  33. Shytle RD, Borlongan CV, Sanberg PR. Nicotine blocks kainic acid-induced wet dog shakes in rats. Neuropsychopharmacology. 1995;13(3):261–4.

    Article  CAS  PubMed  Google Scholar 

  34. Subramaniam SR, Magen I, Bove N, Zhu C, Lemesre V, Dutta G, et al. Chronic nicotine improves cognitive and social impairment in mice overexpressing wild type alpha-synuclein. Neurobiol Dis. 2018;117:170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buccafusco JJ, Beach JW, Terry AV Jr. Desensitization of nicotinic acetylcholine receptors as a strategy for drug development. J Pharmacol Exp Ther. 2009;328(2):364–70.

    Article  CAS  PubMed  Google Scholar 

  36. Donde C, Brunelin J, Mondino M, Cellard C, Rolland B, Haesebaert F. The effects of acute nicotine administration on cognitive and early sensory processes in schizophrenia: a systematic review. Neurosci Biobehav Rev. 2020;118:121–33.

    Article  CAS  PubMed  Google Scholar 

  37. Bhatnagar A, Whitsel LP, Ribisl KM, Bullen C, Chaloupka F, Piano MR, et al. Electronic cigarettes: a policy statement from the American Heart Association. Circulation. 2014;130(16):1418–36.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014;23(2):133–9.

    Article  PubMed  Google Scholar 

  39. Kalkhoran S, Glantz SA. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016;4(2):116–28.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Regan AK, Promoff G, Dube SR, Arrazola R. Electronic nicotine delivery systems: adult use and awareness of the ‘e-cigarette’ in the USA. Tob Control. 2013;22(1):19–23.

    Article  PubMed  Google Scholar 

  41. Hartmann‐Boyce J, McRobbie H, Bullen C, Begh R, Stead LF, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database of Systematic Reviews. 2016(9).

  42. Jankowski M, Brożek G, Lawson J, Skoczyński S, Zejda JE. E-smoking: emerging public health problem? Int J Occup Med Environ Health. 2017;30(3):329–44.

    PubMed  Google Scholar 

  43. East K, Hitchman SC, Bakolis I, Williams S, Cheeseman H, Arnott D, et al. The association between smoking and electronic cigarette use in a cohort of young people. J Adolesc Health. 2018;62(5):539–47.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol. 2020;138:111245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fadus MC, Smith TT, Squeglia LM. The rise of e-cigarettes, pod mod devices, and JUUL among youth: factors influencing use, health implications, and downstream effects. Drug Alcohol Depend. 2019;201:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Farsalinos KE, Polosa R. Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review. Ther Adv Drug Saf. 2014;5(2):67–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaisar MA, Prasad S, Liles T, Cucullo L. A decade of e-cigarettes: limited research & unresolved safety concerns. Toxicology. 2016;365:67–75.

    Article  PubMed  Google Scholar 

  48. Ogunwale MA, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH, Conklin DJ, et al. Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2017;2(3):1207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ogunwale MA, Chen Y, Theis WS, Nantz MH, Conklin DJ, Fu XA. A novel method of nicotine quantification in electronic cigarette liquids and aerosols. Anal Methods. 2017;9(29):4261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phillips B, Titz B, Kogel U, Sharma D, Leroy P, Xiang Y, et al. Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food Chem Toxicol. 2017;109(Pt 1):315–32.

    Article  CAS  PubMed  Google Scholar 

  51. Varughese S, Teschke K, Brauer M, Chow Y, van Netten C, Kennedy SM. Effects of theatrical smokes and fogs on respiratory health in the entertainment industry. Am J Ind Med. 2005;47(5):411–8.

    Article  PubMed  Google Scholar 

  52. Wieslander G, Norbäck D, Lindgren T. Experimental exposure to propylene glycol mist in aviation emergency training: acute ocular and respiratory effects. Occup Environ Med. 2001;58(10):649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuntic M, Oelze M, Steven S, Kröller-Schön S, Stamm P, Kalinovic S, et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur Heart J. 2020;41(26):2472–83.

    Article  CAS  PubMed  Google Scholar 

  54. Vlahos R. E-vaping and high-fat diet consumption: it’s all a hazy memory. Brain Behav Immun. 2021;95:23–4.

    Article  PubMed  Google Scholar 

  55. Margham J, McAdam K, Forster M, Liu C, Wright C, Mariner D, et al. Chemical composition of aerosol from an E-cigarette: a quantitative comparison with cigarette smoke. Chem Res Toxicol. 2016;29(10):1662–78.

    Article  CAS  PubMed  Google Scholar 

  56. Kong G, Morean ME, Cavallo DA, Camenga DR, Krishnan-Sarin S. Reasons for electronic cigarette experimentation and discontinuation among adolescents and young adults. Nicotine Tob Res. 2015;17(7):847–54.

    Article  PubMed  Google Scholar 

  57. Laverty AA, Vardavas CI, Filippidis FT. Design and marketing features influencing choice of e-cigarettes and tobacco in the EU. Eur J Public Health. 2016;26(5):838–41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Audrain-McGovern J, Strasser AA, Wileyto EP. The impact of flavoring on the rewarding and reinforcing value of e-cigarettes with nicotine among young adult smokers. Drug Alcohol Depend. 2016;166:263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frie JA, Underhill J, Zhao B, de Guglielmo G, Tyndale RF, Khokhar JY. OpenVape: an open-source e-cigarette vapor exposure device for rodents. eNeuro. 2020;7(5).

  60. Kim H, Lim J, Buehler SS, Brinkman MC, Johnson NM, Wilson L, et al. Role of sweet and other flavours in liking and disliking of electronic cigarettes. Tob Control. 2016;25(Suppl 2):ii55–61.

    Article  PubMed  Google Scholar 

  61. Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10–5.

    Article  PubMed  Google Scholar 

  62. Farsalinos KE, Romagna G, Allifranchini E, Ripamonti E, Bocchietto E, Todeschi S, et al. Comparison of the cytotoxic potential of cigarette smoke and electronic cigarette vapour extract on cultured myocardial cells. Int J Environ Res Public Health. 2013;10(10):5146–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hua M, Omaiye EE, Luo W, McWhirter KJ, Pankow JF, Talbot P. Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci Rep. 2019;9(1):2782.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cervellati F, Muresan XM, Sticozzi C, Gambari R, Montagner G, Forman HJ, et al. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicol In Vitro. 2014;28(5):999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Behar RZ, Luo W, McWhirter KJ, Pankow JF, Talbot P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci Rep. 2018;8(1):8288.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Akaike A, Tamura Y, Yokota T, Shimohama S, Kimura J. Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 1994;644(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  67. Sears CG, Hart JL, Walker KL, Robertson RM. Generally recognized as safe: uncertainty surrounding e-cigarette flavoring safety. Int J Environ Res Public Health. 2017;14(10).

  68. Wade NE, Baca R, Courtney KE, McCabe CJ, Infante MA, Huestis MA, et al. Preliminary evidence for cannabis and nicotine urinary metabolites as predictors of verbal memory performance and learning among young adults. J Int Neuropsychol Soc. 2021;27(6):546–58.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schroeder MJ, Hoffman AC. Electronic cigarettes and nicotine clinical pharmacology. Tob Control. 2014;23(Suppl 2):ii30-5.

    Article  PubMed  Google Scholar 

  70. Solingapuram Sai KK, Zuo Y, Rose JE, Garg PK, Garg S, Nazih R, et al. Rapid brain nicotine uptake from electronic cigarettes. J Nucl Med. 2020;61(6):928–30.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.

    Article  CAS  PubMed  Google Scholar 

  72. Gritz ER, Baer-Weiss V, Benowitz NL, Van Vunakis H, Jarvik ME. Plasma nicotine and cotinine concentrations in habitual smokeless tobacco users. Clin Pharmacol Ther. 1981;30(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  73. Benowitz NL, Bernert JT, Caraballo RS, Holiday DB, Wang J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am J Epidemiol. 2009;169(2):236–48.

    Article  PubMed  Google Scholar 

  74. Leenders M, Chuang SC, Dahm CC, Overvad K, Ueland PM, Midttun O, et al. Plasma cotinine levels and pancreatic cancer in the EPIC cohort study. Int J Cancer. 2012;131(4):997–1002.

    Article  CAS  PubMed  Google Scholar 

  75. Mokeem SA, Alasqah MN, Michelogiannakis D, Al-Kheraif AA, Romanos GE, Javed F. Clinical and radiographic periodontal status and whole salivary cotinine, IL-1beta and IL-6 levels in cigarette- and waterpipe-smokers and E-cig users. Environ Toxicol Pharmacol. 2018;61:38–43.

    Article  CAS  PubMed  Google Scholar 

  76. Kim JPhDMPH, Lee S. Daily cigarette consumption and urine cotinine level between dual users of electronic and conventional cigarettes, and cigarette-only users. J Psychoactive Drugs. 2020;52(1):20–6.

    Article  Google Scholar 

  77. Orimoloye OA, Uddin SMI, Chen LC, Osei AD, Mirbolouk M, Malovichko MV, et al. Electronic cigarettes and insulin resistance in animals and humans: results of a controlled animal study and the National Health and Nutrition Examination Survey (NHANES 2013–2016). PLoS One. 2019;14(12):e0226744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Etter JF. Levels of saliva cotinine in electronic cigarette users. Addiction. 2014;109(5):825–9.

    Article  PubMed  Google Scholar 

  79. Keith RJ, Riggs DW, Conklin DJ, Lorkiewicz P, Srivastava S, Bhatnagar A, et al. Nicotine metabolism in adults with type 2 diabetes. Nicotine Tob Res. 2019;21(6):846–9.

    Article  CAS  PubMed  Google Scholar 

  80. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–8.

    Article  CAS  PubMed  Google Scholar 

  81. Berlin I, Gasior MJ, Moolchan ET. Sex-based and hormonal contraception effects on the metabolism of nicotine among adolescent tobacco-dependent smokers. Nicotine Tob Res. 2007;9(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  82. Lallai V, Chen YC, Roybal MM, Kotha ER, Fowler JP, Staben A, et al. Nicotine e-cigarette vapor inhalation and self-administration in a rodent model: sex- and nicotine delivery-specific effects on metabolism and behavior. Addict Biol. 2021;26(6):e13024.

    Article  CAS  PubMed  Google Scholar 

  83. Amice B, Ho H, Zhang E, Bullen C. Physiologically based pharmacokinetic modelling for nicotine and cotinine clearance in pregnant women. Front Pharmacol. 2021;12:688597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Arger CA, Taghavi T, Heil SH, Skelly J, Tyndale RF, Higgins ST. Pregnancy-induced increases in the nicotine metabolite ratio: examining changes during antepartum and postpartum. Nicotine Tob Res. 2019;21(12):1706–10.

    Article  CAS  PubMed  Google Scholar 

  85. Ilback NG, Stalhandske T. Nicotine accumulation in the mouse brain is age-dependent and is quantitatively different in various segments. Toxicol Lett. 2003;143(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  86. Barbieri RL, Gochberg J, Ryan KJ. Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest. 1986;77(6):1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roselli CE, Horton LE, Resko JA. Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology. 1985;117(6):2471–7.

    Article  CAS  PubMed  Google Scholar 

  88. Rune GM, Frotscher M. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience. 2005;136(3):833–42.

    Article  CAS  PubMed  Google Scholar 

  89. Ryan KJ, Naftolin F, Reddy V, Flores F, Petro Z. Estrogen formation in the brain. Am J Obstet Gynecol. 1972;114(4):454–60.

    Article  CAS  PubMed  Google Scholar 

  90. Prange-Kiel J, Wehrenberg U, Jarry H, Rune GM. Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus. 2003;13(2):226–34.

    Article  CAS  PubMed  Google Scholar 

  91. Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A. 2004;101(3):865–70.

    Article  CAS  PubMed  Google Scholar 

  92. Azcoitia I, Sierra A, Veiga S, Garcia-Segura LM. Aromatase expression by reactive astroglia is neuroprotective. Ann N Y Acad Sci. 2003;1007:298–305.

    Article  CAS  PubMed  Google Scholar 

  93. McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD. Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci. 2003;23(25):8701–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Roselli CE, Liu M, Hurn PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med. 2009;27(3):207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Margolis AE, Pagliaccio D, Ramphal B, Banker S, Thomas L, Robinson M, et al. Prenatal environmental tobacco smoke exposure alters children’s cognitive control circuitry: a preliminary study. Environ Int. 2021;155:106516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Buls Wollman L, Fregosi RF. Chronic, episodic nicotine alters hypoglossal motor neuron function at a critical developmental time point in neonatal rats. eNeuro. 2021.

  97. Lee B, Park SM, Jeong S, Kim K, Jeung EB. Combined exposure to diazinon and nicotine exerts a synergistic adverse effect in vitro and disrupts brain development and behaviors in vivo. Int J Mol Sci. 2021;22(14).

  98. Nunes-Freitas AL, Soni N, Polli FS, Kohlmeier KA. Prenatal exposure to nicotine in mice is associated with alterations in development and cellular and synaptic effects of alcohol in a brainstem arousal nucleus. Neurotoxicol Teratol. 2021;87:106980.

    Article  CAS  PubMed  Google Scholar 

  99. Zhu M, Echeveste Sanchez M, Douglass EA, Jahad JV, Hanback TD, Guhr Lee TN, et al. Electronic nicotine vapor exposure produces differential changes in central amygdala neuronal activity, thermoregulation and locomotor behavior in male mice. eNeuro. 2021;8(4).

  100. Shao XM, Lopez B, Nathan D, Wilson J, Bankole E, Tumoyan H, et al. A mouse model for chronic intermittent electronic cigarette exposure exhibits nicotine pharmacokinetics resembling human vapers. J Neurosci Methods. 2019;326:108376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burrage EN, Aboaziza E, Hare L, Reppert S, Moore J, Goldsmith WT, et al. Long-term cerebrovascular dysfunction in the offspring from maternal electronic cigarette use during pregnancy. Am J Physiol Heart Circ Physiol. 2021;321(2):H339–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buck JM, Sanders KN, Wageman CR, Knopik VS, Stitzel JA, O’Neill HC. Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology. 2019;149:66–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9(5):436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado de Carvalho L, Changeux JP, et al. Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron. 2005;46(4):595–607.

    Article  CAS  PubMed  Google Scholar 

  105. Watkins SS, Koob GF, Markou A. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res. 2000;2(1):19–37.

    Article  CAS  PubMed  Google Scholar 

  106. Paulson JR, Roder KE, McAfee G, Allen DD, Van der Schyf CJ, Abbruscato TJ. Tobacco smoke chemicals attenuate brain-to-blood potassium transport mediated by the Na, K,2Cl-cotransporter during hypoxia-reoxygenation. J Pharmacol Exp Ther. 2006;316(1):248–54.

    Article  CAS  PubMed  Google Scholar 

  107. Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol. 2011;300(4):H1518–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

    Article  CAS  PubMed  Google Scholar 

  109. Gaimarri A, Moretti M, Riganti L, Zanardi A, Clementi F, Gotti C. Regulation of neuronal nicotinic receptor traffic and expression. Brain Res Rev. 2007;55(1):134–43.

    Article  CAS  PubMed  Google Scholar 

  110. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383(6602):713–6.

    Article  CAS  PubMed  Google Scholar 

  111. Alkondon M, Pereira EF, Almeida LE, Randall WR, Albuquerque EX. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus. Neuropharmacology. 2000;39(13):2726–39.

    Article  CAS  PubMed  Google Scholar 

  112. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al. Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci. 2001;21(20):7993–8003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dwyer JB, Broide RS, Leslie FM. Nicotine and brain development. Birth Defects Res C Embryo Today. 2008;84(1):30–44.

    Article  CAS  PubMed  Google Scholar 

  114. Broide RS, Leslie FM. The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol. 1999;20(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  115. Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20(3–4):299–306.

    Article  CAS  PubMed  Google Scholar 

  116. Gergalova G, Lykhmus O, Kalashnyk O, Koval L, Chernyshov V, Kryukova E, et al. Mitochondria express alpha7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS One. 2012;7(2):e31361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Picciotto MR, Zoli M. Neuroprotection via nAChRs: the role of nAChRs in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Front Biosci. 2008;13:492–504.

    Article  CAS  PubMed  Google Scholar 

  118. Slotkin TA. Nicotine and the adolescent brain: insights from an animal model. Neurotoxicol Teratol. 2002;24(3):369–84.

    Article  CAS  PubMed  Google Scholar 

  119. Duchen MR. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. 2012;464(1):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barsukova AG, Bourdette D, Forte M. Mitochondrial calcium and its regulation in neurodegeneration induced by oxidative stress. Eur J Neurosci. 2011;34(3):437–47.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Toman J, Fiskum G. Influence of aging on membrane permeability transition in brain mitochondria. J Bioenerg Biomembr. 2011;43(1):3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. d’Adesky N, Diaz F, Zhao W, Bramlett HM, Perez-Pinzon MA, Dave KR, et al. Nicotine exposure along with oral contraceptive treatment in female rats exacerbates post-cerebral ischemic hypoperfusion potentially via altered histamine metabolism. Transl Stroke Res. 2021;12(5):817–28.

    Article  CAS  PubMed  Google Scholar 

  123. Willinger CM, Rong J, Tanriverdi K, Courchesne PL, Huan T, Wasserman GA, et al. MicroRNA signature of cigarette smoking and evidence for a putative causal role of microRNAs in smoking-related inflammation and target organ damage. Circ Cardiovasc Genet. 2017;10(5).

  124. Anderson C, Majeste A, Hanus J, Wang S. E-cigarette aerosol exposure induces reactive oxygen species, DNA damage, and cell death in vascular endothelial cells. Toxicol Sci. 2016;154(2):332–40.

    Article  CAS  PubMed  Google Scholar 

  125. Ikonomidis I, Lekakis J, Vamvakou G, Andreotti F, Nihoyannopoulos P. Cigarette smoking is associated with increased circulating proinflammatory and procoagulant markers in patients with chronic coronary artery disease: effects of aspirin treatment. Am Heart J. 2005;149(5):832–9.

    Article  CAS  PubMed  Google Scholar 

  126. Heldt NA, Seliga A, Winfield M, Gajghate S, Reichenbach N, Yu X, et al. Electronic cigarette exposure disrupts blood-brain barrier integrity and promotes neuroinflammation. Brain Behav Immun. 2020;88:363–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang Q, Doerschuk CM. The signaling pathways induced by neutrophil-endothelial cell adhesion. Antioxid Redox Signal. 2002;4(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  128. McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci. 2008;28(38):9451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sifat AE, Vaidya B, Kaisar MA, Cucullo L, Abbruscato TJ. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J Neurochem. 2018;147(2):204–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Prasad S, Sajja RK, Kaisar MA, Park JH, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163–164:144–71.

    Article  PubMed  Google Scholar 

  132. Chaumont M, de Becker B, Zaher W, Culie A, Deprez G, Melot C, et al. Differential effects of e-cigarette on microvascular endothelial function, arterial stiffness and oxidative stress: a randomized crossover trial. Sci Rep. 2018;8(1):10378.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Franzen KF, Willig J, Cayo Talavera S, Meusel M, Sayk F, Reppel M, et al. E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: a randomized, double-blinded pilot study. Vasc Med. 2018;23(5):419–25.

    Article  PubMed  Google Scholar 

  134. Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):L175–87.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ueno H, Pradhan S, Schlessel D, Hirasawa H, Sumpio BE. Nicotine enhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated protein kinase, NF-kappaB, and AP-1. Cardiovasc Toxicol. 2006;6(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  136. Kadry H, Noorani B, Bickel U, Abbruscato TJ, Cucullo L. Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers. Fluids Barriers CNS. 2021;18(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kousik SM, Napier TC, Carvey PM. The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol. 2012;3:121.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L. Pathophysiological impact of cigarette smoke exposure on the cerebrovascular system with a focus on the blood-brain barrier: expanding the awareness of smoking toxicity in an underappreciated area. Int J Environ Res Public Health. 2010;7(12):4111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen YJ, Wallace BK, Yuen N, Jenkins DP, Wulff H, O’Donnell ME. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke. 2015;46(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  140. O’Donnell ME. Blood-brain barrier Na transporters in ischemic stroke. Adv Pharmacol. 2014;71:113–46.

    Article  CAS  PubMed  Google Scholar 

  141. O’Donnell ME, Chen YJ, Lam TI, Taylor KC, Walton JH, Anderson SE. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab. 2013;33(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  142. Dharmasaroja PA. Fluid intake related to brain edema in acute middle cerebral artery infarction. Transl Stroke Res. 2016;7(1):49–53.

    Article  PubMed  Google Scholar 

  143. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    Article  CAS  PubMed  Google Scholar 

  144. Abbruscato TJ, Lopez SP, Mark KS, Hawkins BT, Davis TP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J Pharm Sci. 2002;91(12):2525–38.

    Article  CAS  PubMed  Google Scholar 

  145. Hawkins BT, Abbruscato TJ, Egleton RD, Brown RC, Huber JD, Campos CR, et al. Nicotine increases in vivo blood-brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004;1027(1–2):48–58.

    Article  CAS  PubMed  Google Scholar 

  146. Hioki H, Aoki N, Kawano K, Homori M, Hasumura Y, Yasumura T, et al. Acute effects of cigarette smoking on platelet-dependent thrombin generation. Eur Heart J. 2001;22(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  147. Lilienberg G, Venge P. Platelet adhesion in patients prone to arterial and venous thrombosis: the impact of gender, smoking and heredity. Scand J Clin Lab Invest. 1998;58(4):279–86.

    Article  CAS  PubMed  Google Scholar 

  148. Lindenblatt N, Platz U, Hameister J, Klar E, Menger MD, Vollmar B. Distinct effects of acute and chronic nicotine application on microvascular thrombus formation and endothelial function in male and female mice. Langenbecks Arch Surg. 2007;392(3):285–95.

    Article  PubMed  Google Scholar 

  149. Powell JT. Vascular damage from smoking: disease mechanisms at the arterial wall. Vasc Med. 1998;3(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  150. Rahman MM, Laher I. Structural and functional alteration of blood vessels caused by cigarette smoking: an overview of molecular mechanisms. Curr Vasc Pharmacol. 2007;5(4):276–92.

    Article  CAS  PubMed  Google Scholar 

  151. Qasim H, Karim ZA, Silva-Espinoza JC, Khasawneh FT, Rivera JO, Ellis CC, et al. Short-term e-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J Am Heart Assoc. 2018;7(15).

  152. Alasmari F, Crotty Alexander LE, Hammad AM, Bojanowski CM, Moshensky A, Sari Y. Effects of chronic inhalation of electronic cigarette vapor containing nicotine on neurotransmitters in the frontal cortex and striatum of C57BL/6 mice. Front Pharmacol. 2019;10:885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mathew RJ, Wilson WH. Substance abuse and cerebral blood flow. Am J Psychiatry. 1991;148(3):292–305.

    Article  CAS  PubMed  Google Scholar 

  154. Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: implications for Alzheimer’s disease. J Pharmacol Sci. 2016;131(4):223–32.

    Article  CAS  PubMed  Google Scholar 

  155. Song Y, Kim JG, Cho HJ, Kim JK, Suh DC. Evaluation of cerebral blood flow change after cigarette smoking using quantitative MRA. PLoS One. 2017;12(9):e0184551.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vafaee MS, Gjedde A, Imamirad N, Vang K, Chakravarty MM, Lerch JP, et al. Smoking normalizes cerebral blood flow and oxygen consumption after 12-hour abstention. J Cereb Blood Flow Metab. 2015;35(4):699–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Domino EF, Ni L, Xu Y, Koeppe RA, Guthrie S, Zubieta JK. Regional cerebral blood flow and plasma nicotine after smoking tobacco cigarettes. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(2):319–27.

    Article  CAS  PubMed  Google Scholar 

  158. Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S, et al. Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence. Am J Psychiatry. 2005;162(3):567–77.

    Article  PubMed  Google Scholar 

  159. Alkayed NJ, Murphy SJ, Traystman RJ, Hurn PD, Miller VM. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats. Stroke. 2000;31(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  160. Jover T, Tanaka H, Calderone A, Oguro K, Bennett MV, Etgen AM, et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci. 2002;22(6):2115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wise PM, Dubal DB, Wilson ME, Rau SW, Bottner M. Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology. 2001;142(3):969–73.

    Article  CAS  PubMed  Google Scholar 

  162. Raval AP, Hirsch N, Dave KR, Yavagal DR, Bramlett H, Saul I. Nicotine and estrogen synergistically exacerbate cerebral ischemic injury. Neuroscience. 2011;181:216–25.

    Article  CAS  PubMed  Google Scholar 

  163. Raval AP, Dave KR, Saul I, Gonzalez GJ, Diaz F. Synergistic inhibitory effect of nicotine plus oral contraceptive on mitochondrial complex-IV is mediated by estrogen receptor beta in female rats. J Neurochem (in press). 2012;121(1):157–67.

    Article  CAS  Google Scholar 

  164. De Rasmo D, Signorile A, Papa F, Roca E, Papa S. cAMP/Ca2+ response element-binding protein plays a central role in the biogenesis of respiratory chain proteins in mammalian cells. IUBMB Life. 2010;62(6):447–52.

    PubMed  Google Scholar 

  165. Lee J, Kim CH, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE, et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem. 2005;280(49):40398–401.

    Article  CAS  PubMed  Google Scholar 

  166. Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004;29(11):1943–9.

    Article  CAS  PubMed  Google Scholar 

  167. Kristian T. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell Calcium. 2004;36(3–4):221–33.

    Article  CAS  PubMed  Google Scholar 

  168. Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem. 2009;109(Suppl 1):133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. El Golli N, Dkhili H, Dallagi Y, Rahali D, Lasram M, Bini-Dhouib I, et al. Comparison between electronic cigarette refill liquid and nicotine on metabolic parameters in rats. Life Sci. 2016;146:131–8.

    Article  PubMed  Google Scholar 

  170. Cardenia V, Vivarelli F, Cirillo S, Paolini M, Canistro D, Rodriguez-Estrada MT. The effect of electronic-cigarettes aerosol on rat brain lipid profile. Biochimie. 2018;153:99–108.

    Article  CAS  PubMed  Google Scholar 

  171. Zagoriti Z, El Mubarak MA, Farsalinos K, Topouzis S. Effects of exposure to tobacco cigarette, electronic cigarette and heated tobacco product on adipocyte survival and differentiation in vitro. Toxics. 2020;8(1).

  172. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. VanGilder JL, Hooyman A, Peterson DS, Schaefer SY. Post-stroke cognitive impairments and responsiveness to motor rehabilitation: a review. Curr Phys Med Rehabil Rep. 2020;8(4):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment. Neuropsychiatr Dis Treat. 2014;10:1677–91.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Prasedya ES, Ambana Y, Martyasari NWR, Aprizal Y, Nurrijawati Sunarpi. Short-term E-cigarette toxicity effects on brain cognitive memory functions and inflammatory responses in mice. Toxicol Res. 2020;36(3):267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Flores RJ, Alshbool FZ, Giner P, O'Dell LE, Mendez IA. Exposure to nicotine vapor produced by an electronic nicotine delivery system causes short-term increases in impulsive choice in adult male rats. Nicotine Tob Res. 2021.

  177. Muthumalage T, Prinz M, Ansah KO, Gerloff J, Sundar IK, Rahman I. Inflammatory and oxidative responses induced by exposure to commonly used e-cigarette flavoring chemicals and flavored e-liquids without nicotine. Front Physiol. 2017;8:1130.

    Article  PubMed  Google Scholar 

  178. Tobore TO. On the potential harmful effects of E-cigarettes (EC) on the developing brain: the relationship between vaping-induced oxidative stress and adolescent/young adults social maladjustment. J Adolesc. 2019;76:202–9.

    Article  PubMed  Google Scholar 

  179. Riaz T, Murtaza G, Arif A, Mahmood S, Sultana R, Al-Hussain F, et al. Nicotine smoking is associated with impaired cognitive performance in Pakistani young people. PeerJ. 2021;9:e11470.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Wen M, Yang Z, Wei Y, Huang H, Zheng R, Wang W, et al. More than just statics: temporal dynamic changes of intrinsic brain activity in cigarette smoking. Addict Biol. 2021:e13050.

  181. Ponzoni L, Moretti M, Sala M, Fasoli F, Mucchietto V, Lucini V, et al. Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice. Eur Neuropsychopharmacol. 2015;25(10):1775–86.

    Article  CAS  PubMed  Google Scholar 

  182. Majdi A, Sadigh-Eteghad S, Gjedde A. Effects of transdermal nicotine delivery on cognitive outcomes: a meta-analysis. Acta Neurol Scand. 2021;144(2):179–91.

    Article  CAS  PubMed  Google Scholar 

  183. Sherafat Y, Bautista M, Fowler CD. Multidimensional intersection of nicotine, gene expression, and behavior. Front Behav Neurosci. 2021;15:649129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Alhaddad H, Wong W, Sari AT, Crotty Alexander LE, Sari Y. Effects of 3-month exposure to e-cigarette aerosols on glutamatergic receptors and transporters in mesolimbic brain regions of female C57BL/6 mice. Toxics. 2020;8(4).

  185. Alasmari F, Crotty Alexander LE, Hammad AM, Horton A, Alhaddad H, Schiefer IT, et al. E-cigarette aerosols containing nicotine modulate nicotinic acetylcholine receptors and astroglial glutamate transporters in mesocorticolimbic brain regions of chronically exposed mice. Chem Biol Interact. 2021;333:109308.

    Article  CAS  PubMed  Google Scholar 

  186. Bernert JT Jr, McGuffey JE, Morrison MA, Pirkle JL. Comparison of serum and salivary cotinine measurements by a sensitive high-performance liquid chromatography-tandem mass spectrometry method as an indicator of exposure to tobacco smoke among smokers and nonsmokers. J Anal Toxicol. 2000;24(5):333–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an endowment from Drs. Chantal and Peritz Scheinberg and Florida Department of Health # 20K09 (Ami P. Raval).

Author information

Authors and Affiliations

Authors

Contributions

AR conceived the scientific idea and discussed outline of the review. SP, JS, and BM wrote a draft, and AR provided critical review and revision of the manuscript.

Corresponding author

Correspondence to Ami P. Raval.

Ethics declarations

Ethics Approval

All institutional and national guidelines for the care and use of laboratory animals were followed. Animal usage and experimentation were approved by the Institutional Animal Care and Use Committee at the University of Miami and were in accordance with the US Public Health Service’s Policy on Humane Care and Use of Laboratory Animals.

Consent for Publication

Not applicable.

Conflict of Interest

Ami P. Raval is one of the associate editors of the TSRJ. The other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegel, J., Patel, S.H., Mankaliye, B. et al. Impact of Electronic Cigarette Vaping on Cerebral Ischemia: What We Know So Far. Transl. Stroke Res. 13, 923–938 (2022). https://doi.org/10.1007/s12975-022-01011-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-022-01011-w

Keywords

Navigation