Skip to main content

Advertisement

Log in

Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Powers, W.J., et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke; a journal of cerebral circulation, STR0000000000000211 (2019).

  2. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009;117:481–96.

    Article  PubMed  Google Scholar 

  3. Petcu EB, Smith RA, Miroiu RI, Opris MM. Angiogenesis in old-aged subjects after ischemic stroke: a cautionary note for investigators. J Angiogenes Res. 2010;2:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Popa-Wagner A, Pirici D, Bogdan Petcu E, Mogoanta L, Buga AM, L. Rosen C, et al. Pathophysiology of the vascular wall and its relevance for cerebrovascular disorders in aged rodents. Curr Neurovasc Res. 2010;7:251–67.

    Article  CAS  PubMed  Google Scholar 

  5. Lee HS, Han J, Bai HJ, Kim KW. Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J. 2009;276:4622–35.

    Article  CAS  PubMed  Google Scholar 

  6. Arai K, Jin G, Navaratna D, Lo EH. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 2009;276:4644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hermann DM, Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab. 2009;29:1620–43.

    Article  CAS  PubMed  Google Scholar 

  8. Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M, Ninkovic J, et al. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci. 2009;29:4172–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin TN, Sun SW, Cheung WM, Li F, Chang C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Evaluation with serial magnetic resonance imaging. Stroke. 2002;33:2985–91.

    Article  PubMed  Google Scholar 

  10. Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28:764–71.

    Article  CAS  PubMed  Google Scholar 

  11. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Some remarks on the growth-rate and angiogenesis of microvessels in ischemic stroke. Morphometric and immunocytochemical studies. Patol Pol. 1993;44:203–9.

    CAS  PubMed  Google Scholar 

  12. Zhu W, Fan Y, Hao Q, Shen F, Hashimoto T, Yang GY, et al. Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke. J Cereb Blood Flow Metab. 2009;29:1528–37.

    Article  CAS  PubMed  Google Scholar 

  13. Hao Q, Su H, Marchuk DA, Rola R, Wang Y, Liu W, et al. Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation. Am J Physiol Heart Circ Physiol. 2008;295:H2250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25:1794–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kanazawa M, Takahashi T, Ishikawa M, Onodera O, Shimohata T, del Zoppo GJ. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab. 2019;39:753–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Torbey MT. Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr Neuropharmacol. 2020;18:1250–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Chopp M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx. 2006;3:466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rust R. Insights into the dual role of angiogenesis following stroke. J Cereb Blood Flow Metab. 2020;40:1167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27:697–709.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Thompson JF, Taheri S, Salayandia VM, McAvoy TA, Hill JW, et al. Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J Cereb Blood Flow Metab. 2013;33:1104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elewa HF, El-Remessy AB, Somanath PR, Fagan SC. Diverse effects of statins on angiogenesis: new therapeutic avenues. Pharmacotherapy. 2010;30:169–76.

    Article  CAS  PubMed  Google Scholar 

  22. Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol. 2005;19:117–25.

    Article  CAS  PubMed  Google Scholar 

  23. Tramacere I, Boncoraglio GB, Banzi R, del Giovane C, Kwag KH, Squizzato A, et al. Comparison of statins for secondary prevention in patients with ischemic stroke or transient ischemic attack: a systematic review and network meta-analysis. BMC Med. 2019;17:67.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Bonilla L, et al. Evidence for the efficacy of statins in animal stroke models: a meta-analysis. J Neurochem. 2012;122:233–43.

    Article  CAS  PubMed  Google Scholar 

  25. Aslanyan S, Weir CJ, McInnes GT, Reid JL, Walters MR, Lees KR. Statin administration prior to ischaemic stroke onset and survival: exploratory evidence from matched treatment-control study. Eur J Neurol. 2005;12:493–8.

    Article  CAS  PubMed  Google Scholar 

  26. Elkind MS, Flint AC, Sciacca RR, Sacco RL. Lipid-lowering agent use at ischemic stroke onset is associated with decreased mortality. Neurology. 2005;65:253–8.

    Article  CAS  PubMed  Google Scholar 

  27. Christophe B, Karatela M, Sanchez J, Pucci J, Connolly ES. Statin therapy in ischemic stroke models: a meta-analysis. Transl Stroke Res. 2019.

  28. Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, et al. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol. 2003;53:743–51.

    Article  CAS  PubMed  Google Scholar 

  29. Golab-Janowska M, Paczkowska E, Machalinski B, Meller A, Kotlega D, Safranow K, et al. Statins therapy is associated with increased populations of early endothelial progenitor (CD133+/VEGFR2+) and endothelial (CD34-/CD133- /VEGFR2+) cells in patients with acute ischemic stroke. Curr Neurovasc Res. 2018;15:120–8.

    Article  CAS  PubMed  Google Scholar 

  30. Font MA, Arboix A, Krupinski J. Angiogenesis, neurogenesis and neuroplasticity in ischemic stroke. Curr Cardiol Rev. 2011;6:238–44.

    Article  Google Scholar 

  31. Camnitz W, Burdick MD, Strieter RM, Mehrad B, Keeley EC. Dose-dependent effect of statin therapy on circulating CXCL12 levels in patients with hyperlipidemia. Clin Transl Med. 2012;1:23.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuhlmann CR, Lessmann V, Luhmann HJ. Fluvastatin stabilizes the blood-brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains. Neuropharmacology. 2006;51:907–13.

    Article  CAS  PubMed  Google Scholar 

  33. Jungner M, Lundblad C, Bentzer P. Rosuvastatin in experimental brain trauma: improved capillary patency but no effect on edema or cerebral blood flow. Microvasc Res. 2013;88:48–55.

    Article  CAS  PubMed  Google Scholar 

  34. Urbich C, Dernbach E, Zeiher AM, Dimmeler S. Double-edged role of statins in angiogenesis signaling. Circ Res. 2002;90:737–44.

    Article  CAS  PubMed  Google Scholar 

  35. Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis. 2004;15:235–42.

    Article  PubMed  Google Scholar 

  36. Son BK, Kozaki K, Iijima K, Eto M, Nakano T, Akishita M, et al. Gas6/Axl-PI3K/Akt pathway plays a central role in the effect of statins on inorganic phosphate-induced calcification of vascular smooth muscle cells. Eur J Pharmacol. 2007;556:1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Melaragno MG, Cavet ME, Yan C, Tai LK, Jin ZG, Haendeler J, et al. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J Mol Cell Cardiol. 2004;37:881–7.

    Article  CAS  PubMed  Google Scholar 

  38. Melaragno MG, Fridell YW, Berk BC. The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc Med. 1999;9:250–3.

    Article  CAS  PubMed  Google Scholar 

  39. Eisa-Beygi S, Hatch G, Noble S, Ekker M, Moon TW. The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway regulates developmental cerebral-vascular stability via prenylation-dependent signalling pathway. Dev Biol. 2013;373:258–66.

    Article  CAS  PubMed  Google Scholar 

  40. Kalayci R, Kaya M, Elmas I, Arican N, Ahishali B, Uzun H, et al. Effects of atorvastatin on blood-brain barrier permeability during L-NAME hypertension followed by angiotensin-II in rats. Brain Res. 2005;1042:184–93.

    Article  CAS  PubMed  Google Scholar 

  41. Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS. Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes. 2005;54:2977–82.

    Article  CAS  PubMed  Google Scholar 

  42. Polster SP, et al. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (AT CASH EPOC) trial. Neurosurgery. 2018.

  43. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, National Centre for the Replacement, Refinement and Reduction of Amimals in Research. Animal research: reporting in vivo experiments--the ARRIVE guidelines. J Cereb Blood Flow Metab. 2011;31:991–3.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li C, Engstrom G, Hedblad B, Berglund G, Janzon L. Blood pressure control and risk of stroke: a population-based prospective cohort study. Stroke. 2005;36:725–30.

    Article  PubMed  Google Scholar 

  45. Yang Y, Kimura-Ohba S, Thompson JF, Salayandia VM, Cossé M, Raz L, et al. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiol Dis. 2018;114:95–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang Y, Yang LY, Orban L, Cuylear D, Thompson J, Simon B, et al. Non-invasive vagus nerve stimulation reduces blood-brain barrier disruption in a rat model of ischemic stroke. Brain stimulation. 2018;11:689–98.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ewing JR, Knight RA, Nagaraja TN, Yee JS, Nagesh V, Whitton PA, et al. Patlak plots of Gd-DTPA MRI data yield blood-brain transfer constants concordant with those of 14C-sucrose in areas of blood-brain opening. Magn Reson Med. 2003;50:283–92.

    Article  PubMed  Google Scholar 

  49. Bi M, Gladbach A, van Eersel J, Ittner A, Przybyla M, van Hummel A, et al. Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun. 2017;8:473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tuo QZ, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22:1520–30.

    Article  CAS  PubMed  Google Scholar 

  51. Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab. 2011;31:693–705.

    Article  PubMed  Google Scholar 

  52. You WK, Yotsumoto F, Sakimura K, Adams RH, Stallcup WB. NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis. 2014;17:61–76.

    Article  CAS  PubMed  Google Scholar 

  53. Jovin TG, Yonas H, Gebel JM, Kanal E, Chang YF, Grahovac SZ, et al. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke. 2003;34:2426–33.

    Article  PubMed  Google Scholar 

  54. Mabray MC, et al. Effect of simvastatin on permeability in cerebral cavernous malformation type 1 patients: results from a pilot small randomized controlled clinical trial. Transl Stroke Res. 2019.

  55. Yu SW, Friedman B, Cheng Q, Lyden PD. Stroke-evoked angiogenesis results in a transient population of microvessels. J Cereb Blood Flow Metab. 2007;27:755–63.

    Article  PubMed  Google Scholar 

  56. Ronaldson PT, Demarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab. 2009;29:1084–98.

    Article  CAS  PubMed  Google Scholar 

  57. Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, et al. Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol. 2004;24:491–7.

    Article  CAS  PubMed  Google Scholar 

  58. Maring JA, van Meeteren LA, Goumans MJ, Ten Dijke P. Interrogating TGF-beta function and regulation in endothelial cells. Methods Mol Biol. 2016;1344:193–203.

    Article  CAS  PubMed  Google Scholar 

  59. Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, et al. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis. 2007;10:35–45.

    Article  PubMed  Google Scholar 

  60. ElAli A, Theriault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. 2014;15:6453–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14:1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163:1064–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mendes-Jorge L, Llombart C, Ramos D, López-Luppo M, Valença A, Nacher V, et al. Intercapillary bridging cells: immunocytochemical characteristics of cells that connect blood vessels in the retina. Exp Eye Res. 2012;98:79–87.

    Article  CAS  PubMed  Google Scholar 

  64. Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell. 2004;15:3580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ozerdem U, Stallcup WB. Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis. 2004;7:269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  68. Armulik A, Mae M, Betsholtz C. Pericytes and the blood-brain barrier: recent advances and implications for the delivery of CNS therapy. Ther Deliv. 2011;2:419–22.

    Article  PubMed  Google Scholar 

  69. Krupinski J, Stroemer P, Slevin M, Marti E, Kumar P, Rubio F. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. Neuroreport. 2003;14:1171–6.

    Article  PubMed  Google Scholar 

  70. Sillerud, L.O., et al. Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab, 271678X20953913 (2020).

  71. Tousoulis D, Oikonomou E, Siasos G, Chrysohoou C, Zaromitidou M, Kioufis S, et al. Dose-dependent effects of short term atorvastatin treatment on arterial wall properties and on indices of left ventricular remodeling in ischemic heart failure. Atherosclerosis. 2013;227:367–72.

    Article  CAS  PubMed  Google Scholar 

  72. Yoshimura S, Uchida K, Daimon T, Takashima R, Kimura K, Morimoto T, et al. Randomized controlled trial of early versus delayed statin therapy in patients with acute ischemic stroke: ASSORT trial (Administration of Statin on Acute Ischemic Stroke Patient). Stroke. 2017;48:3057–63.

    Article  CAS  PubMed  Google Scholar 

  73. Selim MH, Molina CA. High-dose statin for every stroke: the good, the bad, and the unknown. Stroke. 2012;43:1996–7.

    Article  PubMed  Google Scholar 

  74. Xiao Y, Zhao H, Tian L, Nolley R, Diep AN, Ernst A, et al. S100A10 is a critical mediator of GAS6/AXL-induced angiogenesis in renal cell carcinoma. Cancer Res. 2019;79:5758–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ni J, Lin M, Jin Y, Li J, Guo Y, Zhou J, et al. Gas6 attenuates sepsis-induced tight junction injury and vascular endothelial Hyperpermeability via the Axl/NF-kappaB signaling pathway. Front Pharmacol. 2019;10:662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizán P, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 2015;6:7264.

    Article  PubMed  Google Scholar 

  77. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  CAS  PubMed  Google Scholar 

  78. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354:553–5.

    Article  PubMed  Google Scholar 

  79. Fan Y, Yang GY. Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol. 2007;2:284–9.

    Article  PubMed  Google Scholar 

  80. Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.

    Article  PubMed  CAS  Google Scholar 

  81. Yang Y, Hill JW, Rosenberg GA. Multiple roles of metalloproteinases in neurological disorders. Prog Mol Biol Transl Sci. 2011;99:241–63.

    Article  CAS  PubMed  Google Scholar 

  82. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.

    Article  CAS  PubMed  Google Scholar 

  83. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68:409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang YL, Hui YN, Guo B, Ma JX. Strengthening tight junctions of retinal microvascular endothelial cells by pericytes under normoxia and hypoxia involving angiopoietin-1 signal way. Eye (Lond). 2007;21:1501–10.

    Article  CAS  Google Scholar 

  85. Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han B, et al. Activation of Sigma-1 receptor enhanced pericyte survival via the interplay between apoptosis and autophagy: implications for blood-brain barrier integrity in stroke. Transl Stroke Res. 2020;11:267–87.

    Article  CAS  PubMed  Google Scholar 

  86. Gautam J, Cao Y, Yao Y. Pericytic laminin maintains blood-brain barrier integrity in an age-dependent manner. Transl Stroke Res. 2020;11:228–42.

    Article  PubMed  Google Scholar 

  87. Gautam J, Yao Y. Roles of pericytes in stroke pathogenesis. Cell Transplant. 2018;27:1798–808.

    Article  PubMed  PubMed Central  Google Scholar 

  88. You WK, Bonaldo P, Stallcup WB. Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. Am J Pathol. 2012;180:1145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  90. Alonso A, Reinz E, Jenne JW, Fatar M, Schmidt-Glenewinkel H, Hennerici MG, et al. Reorganization of gap junctions after focused ultrasound blood-brain barrier opening in the rat brain. J Cereb Blood Flow Metab. 2010;30:1394–402.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ezan P, André P, Cisternino S, Saubaméa B, Boulay AC, Doutremer S, et al. Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23.

    Article  PubMed  Google Scholar 

  93. Zhao BQ, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007;38:748–52.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12:441–5.

    Article  CAS  PubMed  Google Scholar 

  95. Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem. 2012;123:203–16.

    Article  PubMed  CAS  Google Scholar 

  96. Nishihara T, Remacle AG, Angert M, Shubayev I, Shiryaev SA, Liu H, et al. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem. 2015;290:3693–707.

    Article  CAS  PubMed  Google Scholar 

  97. Stallcup WB, Huang FJ. A role for the NG2 proteoglycan in glioma progression. Cell Adhes Migr. 2008;2:192–201.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Kelsey Duval for English editing. Confocal images in this paper were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility. Electron microscopy images in this paper were generated in the University of New Mexico Department of Cell Biology and Physiology Electron Microscopy Facility.

Funding

This study was supported by grants from the American Heart Association (13GRNT17060032) and National Institutes of Health (1RF1NS110724) to Dr. Yi Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Procedures was approved by the University of New Mexico Animal Care Committee and conformed to the National Institutes of Health Guidelines for use of animals in research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 5069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, L.Y., Salayandia, V.M. et al. Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl. Stroke Res. 12, 905–922 (2021). https://doi.org/10.1007/s12975-020-00883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00883-0

Keywords

Navigation