Skip to main content

Advertisement

Log in

Characterization of CB2 Receptor Expression in Peripheral Blood Monocytes of Acute Ischemic Stroke Patients

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Both preclinical and clinical evidence supports the involvement of the endocannabinoid system in the pathobiology of cerebral ischemia. Selective cannabinoid-2 (CB2) receptor agonists exert significant neuroprotection in animal models of focal brain ischemia through a robust anti-inflammatory effect, involving both resident and peripheral immune cells. Nevertheless, no definitive studies demonstrating the relevance of CB2 receptors in human stroke exist.

Using rtPCR and flow cytometry assays, we investigated CB2 receptor expression in circulating monocytes from 26 acute ischemic stroke patients and 16 age-matched healthy controls (CT). We also evaluated miR-665 expression, as potential CB2 receptor regulator. The median mRNA levels of CB2 were significantly (p < 0.0001) increased in total monocytes 24 h and 48 h after stroke as compared with CT. This was paralleled by elevation of miR-665 levels in monocytes collected from patients 24 h (p < 0.05 vs CT) and 48 h (p < 0.05 vs CT and p < 0.0001 vs 24 h) after ischemic stroke. Furthermore, an increased percentage of CB2+/CD16+ events, but not CB2+/CD14+ events, was found 24 h [20.17% (IQR, 17.22–23.58)] and 48 h [18.61% (IQR, 15.44–22.06)] after ischemic stroke when compared with CT [10.96% (IQR, 9.185–13.32)]. The percentage of CB2+/CD16+ events in monocytes was positively correlated with NIHSS score at entrance (r = 0.4327, p = 0.027). The potential beneficial functions of CD16+ intermediate and nonclassical monocytes in stroke and the elevated expression of CB2 receptor in these subsets strongly suggest that CB2 receptor agonists can be exploited for the treatment of ischemic stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. England TJ, Hind WH, Rasid NA, O’Sullivan SE. Cannabinoids in experimental stroke: a systematic review and meta-analysis. J Cereb Blood Flow Metab. 2015;35:348–58. https://doi.org/10.1038/jcbfm.2014.218.

    Article  CAS  PubMed  Google Scholar 

  2. Fernández-Ruiz J, Moro MA, Martínez-Orgado J. Cannabinoids in neurodegenerative disorders and stroke/brain trauma: from preclinical models to clinical applications. Neurotherapeutics. 2015;12:793–806. https://doi.org/10.1007/s13311-015-0381-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi S, Mou Y, Silva A. Cannabis and cannabinoid biology in stroke. Controversies, risks, and promises. Stroke. 2019;50:2640–5. https://doi.org/10.1161/STROKEAHA.118.023587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hillard. Role of cannabinoids and endocannabinoids in cerebral ischemia. Curr Pharm Des. 2008;14:2347–61. https://doi.org/10.2174/138161208785740054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moris D, Georgopoulos S, Felekouras E, Patsouris E, Theocharis S. The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe? Expert Opin Ther Targets. 2015;19:1261–75. https://doi.org/10.1517/14728222.2015.1043268.

    Article  CAS  PubMed  Google Scholar 

  6. Atwood BK, Mackie K. CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol. 2010;160(3):467–79. https://doi.org/10.1111/j.1476-5381.2010.00729.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cabral GA, Griffin-Thomas L. Emerging role of the cannabinoid receptor CB2 in immune regulation: therapeutic prospects for neuroinflammation. Expert Rev Mol Med. 2009;11:e3. https://doi.org/10.1017/S1462399409000957.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB(2) receptor and its role as a regulator of inflammation. Cell Mol Life Sci. 2016;73(23):4449–70. https://doi.org/10.1007/s00018-016-2300-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashton JC, Rahman RM, Nair SM, Sutherland BA, Glass M, Appleton I. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett. 2007;412(2):114–7. https://doi.org/10.1016/j.neulet.2006.10.053.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt W, Schäfer F, Striggow V, Fröhlich K, Striggow F. Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. Neuroscience. 2012;227:313–26. https://doi.org/10.1016/j.neuroscience.2012.09.080.

    Article  CAS  PubMed  Google Scholar 

  11. Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, et al. In vivo TSPO and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation. 2017;14:69. https://doi.org/10.1186/s12974-017-0851-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang M, Martin BR, Adler MW, Razdan RK, Ganea D, Tuma RF. Modulation of the balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral ischemic/reperfusion injury. Neuroscience. 2008;152:753–60. https://doi.org/10.1016/j.neuroscience.2008.01.022.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang M, Adler MW, Abood ME, Ganea D, Jallo J, Tuma RF. CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc Res. 2009;78(1):86–94. https://doi.org/10.1016/j.mvr.2009.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murikinati S, Jüttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, et al. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 2010;24(3):788–98. https://doi.org/10.1096/fj.09-141275.

    Article  CAS  PubMed  Google Scholar 

  15. Zarruk JG, Fernández-López D, García-Yébenes I, García-Gutiérrez MS, Vivancos J, Nombela F, et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection. Stroke. 2012;43(1):211–9. https://doi.org/10.1161/STROKEAHA.111.631044.

    Article  CAS  PubMed  Google Scholar 

  16. Yu SJ, Reiner D, Shen H, Wu KJ, Liu QR, Wang Y. Time-dependent protection of CB2 receptor agonist in stroke. PLoS One. 2015;10(7):e0132487. https://doi.org/10.1371/journal.pone.0132487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolff V, Jouanjus E. Strokes are possible complications of cannabinoids use. Epilepsy Behav. 2017;70(Pt B):355–63. https://doi.org/10.1016/j.yebeh.2017.01.031.

    Article  PubMed  Google Scholar 

  18. Kolb B, Saber H, Fadel H, Rajah G. The endocannabinoid system and stroke: a focused review. Brain Circ. 2019;5:1–7. https://doi.org/10.4103/bc.bc_29_18.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petry G, Boiziau C, Dousset V, Brochet B. Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics. 2007;4:434–42. https://doi.org/10.1016/j.nurt.2007.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiba T, Umegaki K. Pivotal roles of monocytes/macrophages in stroke. Mediat Inflamm. 2013;2013:759103–10. https://doi.org/10.1155/2013/759103.

    Article  Google Scholar 

  21. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 2018;28(6):791–805. https://doi.org/10.1111/bpa.12583.

    Article  CAS  PubMed  Google Scholar 

  22. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80. https://doi.org/10.1182/blood-2010-02-258558.

    Article  CAS  PubMed  Google Scholar 

  23. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–31. https://doi.org/10.1182/blood-2010-12-326355.

    Article  CAS  PubMed  Google Scholar 

  24. Gren ST, Rasmussen TB, Janciauskiene S, Håkansson K, Gerwien JG, Grip O. A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLoS One. 2015;10(12):e0144351. https://doi.org/10.1371/journal.pone.0144351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. https://doi.org/10.3389/fimmu.2019.02035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Merah-Mourah FS, Cohen SO, Charron D, Mooney N, Haziot A. Identification of novel human monocyte subsets and evidence for phenotypic groups defined by interindividual variations of expression of adhesion molecules. Sci Rep. 2020;10:4397. https://doi.org/10.1038/s41598-020-61022-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017;12(4):e0176460. https://doi.org/10.1371/journal.pone.0176460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaito M, Araya S, Gondo Y, Fujita M, Minato N, Nakanishi M, et al. Relevance of distinct monocyte subsets to clinical course of ischemic stroke patients. PLoS One. 2013;8(8):e69409. https://doi.org/10.1371/journal.pone.0069409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L, et al. Monocyte subtypes predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab. 2009;29(5):994–1002. https://doi.org/10.1038/jcbfm.2009.25.

    Article  CAS  PubMed  Google Scholar 

  30. Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in health and disease. Annu Rev Immunol. 2019;37:439–56. https://doi.org/10.1146/annurev-immunol-042617-053119.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Cheng Y, Song Q, Wei C, Liu J, Wu B, et al. The association between monocyte to high-density lipoprotein ratio and hemorrhagic transformation in patients with acute ischemic stroke. Aging (Albany NY). 2020;12(3):2498–506. https://doi.org/10.18632/aging.102757.

    Article  CAS  Google Scholar 

  32. Ren H, Han L, Liu H, Wang L, Liu X, Gao Y. Decreased lymphocyte-to-monocyte ratio predicts poor prognosis of acute ischemic stroke treated with thrombolysis. Med Sci Monit. 2017;23:5826–33. https://doi.org/10.12659/msm.907919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liberale L, Montecucco F, Bonaventura A, Casetta I, Seraceni S, Trentini A, et al. Monocyte count at onset predicts poststroke outcomes during a 90-day follow-up. Eur J Clin Investig. 2017;47(10):702–10. https://doi.org/10.1111/eci.12795.

    Article  Google Scholar 

  34. Nadareishvili Z, Luby M, Leigh R, Shah J, Lynch JK, Hsia AW, et al. An MRI hyperintense acute reperfusion marker is related to elevated peripheral monocyte count in acute ischemic stroke. J Neuroimaging. 2018;28(1):57–60. https://doi.org/10.1111/jon.12462.

    Article  PubMed  Google Scholar 

  35. Chlegel D, Kolb SJ, Luciano JM, Tovar JM, Cucchiara BL, Liebeskind DS, et al. Utility of the NIH Stroke Scale as a predictor of hospital disposition. Stroke. 2003;34:134–7. https://doi.org/10.1161/01.str.0000048217.44714.02.

    Article  Google Scholar 

  36. Hage V. The NIH stroke scale: a window into neurological status. Nurs Com Nurs Spectr. 2011;24(15):44–9.

    Google Scholar 

  37. Bonita R, Beaglehole R. Modification of Rankin Scale: recovery of motor function after stroke. Stroke. 1988;19(12):1497–500. https://doi.org/10.1161/01.str.19.12.1497.

    Article  CAS  PubMed  Google Scholar 

  38. Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41. https://doi.org/10.1161/01.str.24.1.35.

    Article  PubMed  Google Scholar 

  39. Yesilot Barlas N, Putaala J, Waje-Andreassen U, Vassilopoulou S, Nardi K, Odier C, et al. Etiology of first-ever ischaemic stroke in European young adults: the 15 cities young stroke study. Eur J Neurol. 2013;20:1431–9. https://doi.org/10.1111/ene.12228.

    Article  CAS  PubMed  Google Scholar 

  40. Cabral GA, Rogers TJ, Lichtman AH. Turning over a new leaf: cannabinoid and endocannabinoid modulation of immune function. J NeuroImmune Pharmacol. 2015;10:193–203. https://doi.org/10.1007/s11481-015-9615-z.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schurman LD, Lu D, Kendall DA, Howlett AC, Lichtman AH. Molecular mechanism and cannabinoid pharmacology. In: Handbook of Experimental Pharmacology. Berlin: Springer; 2019. https://doi.org/10.1007/164_2019_298.

    Chapter  Google Scholar 

  42. Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J. 2012;33(7):846–56. https://doi.org/10.1093/eurheartj/ehr449.

    Article  CAS  PubMed  Google Scholar 

  43. Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res. 2011;50(2):193–211. https://doi.org/10.1016/j.plipres.2011.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. England TJ, Hedstrom A, O'Sullivan S, Donnelly R, Barrett DA, Sarmad S, et al. RECAST (remote ischemic conditioning after stroke trial): a pilot randomized placebo controlled phase II trial in acute ischemic stroke. Stroke. 2017;48:1412–5. https://doi.org/10.1161/STROKEAHA.116.016429.

    Article  PubMed  Google Scholar 

  45. Castaneda JT, Harui A, Kiertscher SM, Roth JD, Roth MD. Differential expression of intracellular and extracellular CB(2) cannabinoid receptor protein by human peripheral blood leukocytes. J NeuroImmune Pharmacol. 2013;8(1):323–32. https://doi.org/10.1007/s11481-012-9430-8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Graham ES, Angel CE, Schwarcz LE, Dunbar PR, Glass M. Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol. 2010;23(1):25–34. https://doi.org/10.1177/039463201002300103.

    Article  CAS  PubMed  Google Scholar 

  47. Roth MD, Whittaker K, Salehi K, Tashkin DP, Baldwin GC. Mechanisms for impaired effector function in alveolar macrophages from marijuana and cocaine smokers. J Neuroimmunol. 2004;147(1–2):82–6. https://doi.org/10.1016/j.jneuroim.2003.10.017.

    Article  CAS  PubMed  Google Scholar 

  48. Hegde VL, Nagarkatti M, Nagarkatti PS. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol. 2010;40(12):3358–71. https://doi.org/10.1002/eji.201040667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buch SJ. Cannabinoid receptor 2 activation: a means to prevent monocyte-endothelium engagement. Am J Pathol. 2013;183(5):1375–7. https://doi.org/10.1016/j.ajpath.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  50. Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Pacher P, Persidsky Y. Selective activation of cannabinoid receptor 2 in leukocytes suppresses their engagement of the brain endothelium and protects the blood-brain barrier. Am J Pathol. 2013;183(5):1548–58. https://doi.org/10.1016/j.ajpath.2013.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Persidsky Y, Fan S, Dykstra H, Reichenbach NL, Rom S, Ramirez SH. Activation of cannabinoid type two receptors (CB2) diminish inflammatory responses in macrophages and brain endothelium. J NeuroImmune Pharmacol. 2015;10(2):302–8. https://doi.org/10.1007/s11481-015-9591-3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Han KH, Lim S, Ryu J, Lee CW, Kim Y, Kang JH, et al. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc Res. 2009;84(3):378–86. https://doi.org/10.1093/cvr/cvp240.

    Article  CAS  PubMed  Google Scholar 

  53. Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Huffman JW, et al. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol. 2007;293(4):H2210–8. https://doi.org/10.1152/ajpheart.00688.2007.

    Article  CAS  PubMed  Google Scholar 

  54. Centonze D, Battistini L, Maccarrone M. The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des. 2008;14(23):2370–42. https://doi.org/10.2174/138161208785740018.

    Article  CAS  PubMed  Google Scholar 

  55. Naccarato M, Pizzuti D, Petrosino S, Simonetto M, Ferigo L, Grandi FC, et al. possible anandamide and palmitoylethanolamide involvement in human stroke. Lipids Health Dis. 2010;9:47. https://doi.org/10.1186/1476-511X-9-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Möhnle P, Schütz SV, Schmidt M, Hinske C, Hübner M, Heyn J, et al. MicroRNA-665 is involved in the regulation of the expression of the cardioprotective cannabinoid receptor CB2 in patients with severe heart failure. Biochem Biophys Res Commun. 2014;451(4):516–21. https://doi.org/10.1016/j.bbrc.2014.08.008.

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Fan J, Yin Z, Wang F, Chen C, Wang DW. Identification of cardiac-related circulating microRNA profile in human chronic heart failure. Oncotarget. 2016;7(1):33–45. https://doi.org/10.18632/oncotarget.6631.

    Article  PubMed  Google Scholar 

  58. Lin B, Feng DG, Xu J. microRNA-665 silencing improves cardiac function in rats with heart failure through activation of the cAMP signaling pathway. J Cell Physiol. 2019;234(8):13169–81. https://doi.org/10.1002/jcp.27987.

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH. Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem. 2010;113(6):1621–31. https://doi.org/10.1111/j.1471-4159.2010.06731.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Y, Chigurupati S, Holloway HW, Mughal M, Tweedie D, Bruestle DA, et al. Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One. 2012;7(2):e32008. https://doi.org/10.1371/journal.pone.0032008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol. 2012;166(5):1586–99. https://doi.org/10.1111/j.1476-5381.2012.01971.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes. 2010;59(4):1030–7. https://doi.org/10.2337/db09-1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang W, Zhu F, Zheng H, Zhou Z, Miao P, Zhao L, et al. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: an implication in the treatment of atherosclerosis. Mol Immunol. 2019;116:73–9. https://doi.org/10.1016/j.molimm.2019.09.021.

    Article  CAS  PubMed  Google Scholar 

  64. Carlisle SJ, Marciano-Cabral F, Staab A, Ludwick C, Cabral GA. Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol. 2002;2(1):69–82. https://doi.org/10.1016/s1567-5769(01)00147-3.

    Article  CAS  PubMed  Google Scholar 

  65. Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007;178(11):7405–11. https://doi.org/10.4049/jimmunol.178.11.7405.

    Article  CAS  Google Scholar 

  66. Skrzeczyńska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10. Scand J Immunol. 2008;67(2):152–9. https://doi.org/10.1111/j.1365-3083.2007.02051.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

The study was supported by a grant of the Italian Ministry of Health (RC2017-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria Greco.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures involving human participants were approved by the institutional ethics committee (N. p-20170026158) in accordance with the Helsinki declaration.

Consent to Participate

A written informed consent was obtained by all participants involved in the study.

Consent for Publication

Verbal informed consent was obtained prior to the interview.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, R., Demartini, C., Zanaboni, A. et al. Characterization of CB2 Receptor Expression in Peripheral Blood Monocytes of Acute Ischemic Stroke Patients. Transl. Stroke Res. 12, 550–558 (2021). https://doi.org/10.1007/s12975-020-00851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00851-8

Keywords

Navigation