Skip to main content

Advertisement

Log in

Radiologic Cerebral Reperfusion at 24 h Predicts Good Clinical Outcome

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Cerebral reperfusion and arterial recanalization are radiological features of the effectiveness of thrombolysis in acute ischemic stroke (AIS) patients. Here, an investigation of the prognostic role of early recanalization/reperfusion on clinical outcome was performed. In AIS patients (n = 55), baseline computerized tomography (CT) was performed ≤ 8 h from symptom onset, whereas CT determination of reperfusion/recanalization was assessed at 24 h. Multiple linear and logistic regression models were used to correlate reperfusion/recanalization with radiological (i.e., hemorrhagic transformation, ischemic core, and penumbra volumes) and clinical outcomes (assessed as National Institutes of Health Stroke Scale [NIHSS] reduction ≥ 8 points or a NIHSS ≤ 1 at 24 h and as modified Rankin Scale [mRS] < 2 at 90 days). At 24 h, patients achieving radiological reperfusion were n = 24, while the non-reperfused were n = 31. Among non-reperfused, n = 15 patients were recanalized. Radiological reperfusion vs. recanalization was also confirmed by early increased levels of circulating inflammatory biomarkers (i.e., serum osteopontin). In multivariate analysis, ischemic lesion volume reduction was associated with both recanalization (β = 0.265; p = 0.014) and reperfusion (β = 0.461; p < 0.001), but only reperfusion was independently associated with final infarct volume (β = − 0.333; p = 0.007). Only radiological reperfusion at 24 h predicted good clinical response at day 1 (adjusted OR 16.054 [1.423–181.158]; p = 0.025) and 90-day good functional outcome (adjusted OR 25.801 [1.483–448.840]; p = 0.026). At ROC curve analysis the AUC of reperfusion was 0.777 (p < 0.001) for the good clinical response at 24 h and 0.792 (p < 0.001) for 90-day clinical outcome. Twenty-four-hour radiological reperfusion assessed by CT is associated with good clinical response on day 1 and good functional outcome on day 90 in patients with ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol. 2018;18(1):8.

    Article  Google Scholar 

  2. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early Management of Patients with Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.

    Article  Google Scholar 

  3. El Amki M, Wegener S. Improving cerebral blood flow after arterial recanalization: a novel therapeutic strategy in stroke. Int J Mol Sci 2017; 18(12).

  4. Horsch AD, Dankbaar JW, Niesten JM, van Seeters T, van der Schaaf I, van der Graaf Y, et al. Predictors of reperfusion in patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2015;36(6):1056–62.

    Article  CAS  Google Scholar 

  5. Iglesias-Rey R, Rodriguez-Yanez M, Rodriguez-Castro E, et al. Worse outcome in stroke patients treated with rt-PA without early reperfusion: associated factors. Transl Stroke Res. 2017.

  6. Janjua N, Alkawi A, Suri MF, Qureshi AI. Impact of arterial reocclusion and distal fragmentation during thrombolysis among patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2008;29(2):253–8.

    Article  CAS  Google Scholar 

  7. Bouleti C, Mewton N, Germain S. The no-reflow phenomenon: state of the art. Arch Cardiovasc Dis. 2015;108(12):661–74.

    Article  Google Scholar 

  8. Tomsick T. TIMI, TIBI, TICI: I came, I saw, I got confused. AJNR Am J Neuroradiol. 2007;28(2):382–4.

    PubMed  Google Scholar 

  9. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.

    Article  CAS  Google Scholar 

  10. Campbell BCV, Donnan GA, Lees KR, Hacke W, Khatri P, Hill MD, et al. Endovascular stent thrombectomy: the new standard of care for large vessel ischaemic stroke. Lancet Neurol. 2015;14(8):846–54.

    Article  Google Scholar 

  11. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    Article  Google Scholar 

  12. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  Google Scholar 

  13. Jauch EC, Saver JL, Adams HP Jr, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

    Article  Google Scholar 

  14. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(10):3020–35.

    Article  CAS  Google Scholar 

  15. Benson JC, Payabvash S, Mortazavi S, Zhang L, Salazar P, Hoffman B, et al. CT perfusion in acute lacunar stroke: detection capabilities based on infarct location. AJNR Am J Neuroradiol. 2016;37(12):2239–44.

    Article  CAS  Google Scholar 

  16. Morelli N, Rota E, Michieletti E, Guidetti D. The “Vexata Quaestio” on lacunar stroke: the role of CT perfusion imaging. AJNR Am J Neuroradiol. 2017;38(2):E11–2.

    Article  CAS  Google Scholar 

  17. Cho TH, Nighoghossian N, Mikkelsen IK, Derex L, Hermier M, Pedraza S, Fiehler J, Østergaard L, Berthezène Y, Baron JC: Reperfusion within 6 hours outperforms recanalization in predicting penumbra salvage, lesion growth, final infarct, and clinical outcome Stroke 2015, 46(6):1582–1589.

  18. Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.

    Article  Google Scholar 

  19. Brott T, Adams HP Jr, Olinger CP, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–70.

    Article  CAS  Google Scholar 

  20. Katzan IL, Lapin B. PROMIS GH (Patient-Reported Outcomes Measurement Information System Global Health) scale in stroke: a validation study. Stroke. 2018;49(1):147–54.

    Article  Google Scholar 

  21. Dargazanli C, Arquizan C, Gory B, Consoli A, Labreuche J, Redjem H, et al. Mechanical thrombectomy for minor and mild stroke patients harboring large vessel occlusion in the anterior circulation: a multicenter cohort study. Stroke. 2017;48(12):3274–81.

    Article  Google Scholar 

  22. Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.

    Article  CAS  Google Scholar 

  23. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, et al. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke. 2003;34(8):e109–37.

    Article  Google Scholar 

  24. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37(4):979–85.

    Article  Google Scholar 

  25. Brott T, Marler JR, Olinger CP, Adams HP, Tomsick T, Barsan WG, et al. Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke. 1989;20(7):871–5.

    Article  CAS  Google Scholar 

  26. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41(1):e34–40.

    Article  Google Scholar 

  27. Choi JS, Kim HY, Cha JH, Choi JY, Lee MY. Transient microglial and prolonged astroglial upregulation of osteopontin following transient forebrain ischemia in rats. Brain Res. 2007;1151:195–202.

    Article  CAS  Google Scholar 

  28. Baliga SS, Merrill GF, Shinohara ML, Denhardt DT. Osteopontin expression during early cerebral ischemia-reperfusion in rats: enhanced expression in the right cortex is suppressed by acetaminophen. PLoS One. 2011;6(1):e14568.

    Article  CAS  Google Scholar 

  29. Carbone F, Rigamonti F, Burger F, Roth A, Bertolotto M, Spinella G, et al. Serum levels of osteopontin predict major adverse cardiovascular events in patients with severe carotid artery stenosis. Int J Cardiol. 2018;255:195–9.

    Article  Google Scholar 

  30. Nagar VA, McKinney AM, Karagulle AT, Truwit CL. Reperfusion phenomenon masking acute and subacute infarcts at dynamic perfusion CT: confirmation by fusion of CT and diffusion-weighted MR images. AJR Am J Roentgenol. 2009;193(6):1629–38.

    Article  Google Scholar 

  31. Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology. 2007;49(2):93–102.

    Article  Google Scholar 

  32. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.

    Article  CAS  Google Scholar 

  33. Ito U, Hakamata Y, Kawakami E, Oyanagi K. Temporary [corrected] cerebral ischemia results in swollen astrocytic end-feet that compress microvessels and lead to delayed [corrected] focal cortical infarction. J Cereb Blood Flow Metab. 2011;31(1):328–38.

    Article  Google Scholar 

  34. Tachibana M, Ago T, Wakisaka Y, Kuroda J, Shijo M, Yoshikawa Y, et al. Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. Stroke. 2017;48(8):2222–30.

    Article  CAS  Google Scholar 

  35. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet. 2012;380(9849):1241–9.

    Article  Google Scholar 

  36. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012;380(9849):1231–40.

    Article  Google Scholar 

  37. Angermaier A, Khaw AV, Kirsch M, Kessler C, Langner S. Influence of recanalization and time of cerebral ischemia on tissue outcome after endovascular stroke treatment on computed tomography perfusion. J Stroke Cerebrovasc Dis. 2015;24(10):2306–12.

    Article  Google Scholar 

  38. Golitz P, Muehlen I, Gerner ST, Knossalla F, Doerfler A. Ultraearly assessed reperfusion status after middle cerebral artery recanalization predicting clinical outcome. Acta Neurol Scand. 2018;137:609–17. https://doi.org/10.1111/ane.12907.

    Article  CAS  PubMed  Google Scholar 

  39. De Silva DA, Fink JN, Christensen S, et al. Assessing reperfusion and recanalization as markers of clinical outcomes after intravenous thrombolysis in the echoplanar imaging thrombolytic evaluation trial (EPITHET). Stroke. 2009;40(8):2872–4.

    Article  Google Scholar 

  40. Eilaghi A, Brooks J, d'Esterre C, et al. Reperfusion is a stronger predictor of good clinical outcome than recanalization in ischemic stroke. Radiology. 2013;269(1):240–8.

    Article  Google Scholar 

  41. An H, Ford AL, Eldeniz C, Chen Y, Vo KD, Zhu H, et al. Reperfusion beyond 6 hours reduces infarct probability in moderately ischemic brain tissue. Stroke. 2016;47(1):99–105.

    Article  Google Scholar 

  42. Dankbaar JW, Horsch AD, van den Hoven AF, Kappelle LJ, van der Schaaf I, van Seeters T, et al. Prediction of clinical outcome after acute ischemic stroke: the value of repeated noncontrast computed tomography, computed tomographic angiography, and computed tomographic perfusion. Stroke. 2017;48(9):2593–6.

    Article  Google Scholar 

  43. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol. 2016;7(1):113–70.

    Article  Google Scholar 

  44. Carbone F, Vuilleumier N, Burger F, Roversi G, Tamborino C, Casetta I, et al. Serum osteopontin levels are upregulated and predict disability after an ischaemic stroke. Eur J Clin Investig. 2015;45(6):579–86.

    Article  CAS  Google Scholar 

  45. Suezawa C, Kusachi S, Murakami T, Toeda K, Hirohata S, Nakamura K, et al. Time-dependent changes in plasma osteopontin levels in patients with anterior-wall acute myocardial infarction after successful reperfusion: correlation with left-ventricular volume and function. J Lab Clin Med. 2005;145(1):33–40.

    Article  CAS  Google Scholar 

  46. Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol. 2017;8:467.

    Article  Google Scholar 

  47. Montecucco F, Liberale L, Bonaventura A, Vecchie A, Dallegri F, Carbone F. The role of inflammation in cardiovascular outcome. Curr Atheroscler Rep. 2017;19(3):11.

    Article  Google Scholar 

  48. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interv Neurol. 2013;1(3–4):185–99.

    PubMed  PubMed Central  Google Scholar 

  49. Marchal G, Young AR, Baron JC. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab. 1999;19(5):467–82.

    Article  CAS  Google Scholar 

  50. Gaudinski MR, Henning EC, Miracle A, Luby M, Warach S, Latour LL. Establishing final infarct volume: stroke lesion evolution past 30 days is insignificant. Stroke. 2008;39(10):2765–8.

    Article  Google Scholar 

  51. Soares BP, Dankbaar JW, Bredno J, Cheng SC, Bhogal S, Dillon WP, et al. Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability. Neuroradiology. 2009;51(7):445–51.

    Article  Google Scholar 

  52. Pezzini A, Busto G, Zedde M, Gamba M, Zini A, Poli L, et al. Vulnerability to infarction during cerebral ischemia in migraine sufferers. Stroke. 2018;49(3):573–8.

    Article  Google Scholar 

  53. Padroni M, Bernardoni A, Tamborino C, Roversi G, Borrelli M, Saletti A, et al. Cerebral blood volume ASPECTS is the best predictor of clinical outcome in acute ischemic stroke: a retrospective, combined semi-quantitative and quantitative assessment. PLoS One. 2016;11(1):e0147910.

    Article  Google Scholar 

  54. Shin YJ, Kim HL, Choi JS, Choi JY, Cha JH, Lee MY. Osteopontin: correlation with phagocytosis by brain macrophages in a rat model of stroke. Glia. 2011;59(3):413–23.

    Article  Google Scholar 

Download references

Funding

Analysis and interpretation of data were supported by a grant from the European Commission to Prof F. Mach (FP7-INNOVATION I HEALTH-F2-2013-602114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Carbone.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants included in the study.

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, F., Busto, G., Padroni, M. et al. Radiologic Cerebral Reperfusion at 24 h Predicts Good Clinical Outcome. Transl. Stroke Res. 10, 178–188 (2019). https://doi.org/10.1007/s12975-018-0637-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-018-0637-8

Keywords

Navigation