Skip to main content

Advertisement

Log in

Tumor Necrosis Factor-α Modulates Cerebral Aneurysm Formation and Rupture

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Inflammation is a critical process behind cerebral aneurysm formation and rupture. Tumor necrosis factor alpha (TNF-α) is a key immune modulator that has been implicated in cerebral aneurysm pathophysiology. This may occur through TNF-α-mediated endothelial injury, smooth muscle cell phenotypic modulation, recruitment of macrophages, activation of chemotactic cytokines, upregulation of matrix remodeling genes, production of free radicals leading to oxidative stress, and ultimately cellular apoptosis. Recent studies have indicated that TNF-α may be a potential target for the development of novel medical therapies, but additional experimental data is needed to clarify the intricacies of TNF-α activation and its critical downstream targets in cerebral aneurysms. This review provides an update on the mechanisms underlying TNF-α-induced molecular modulation in cerebral aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP:

Activator protein

FADD:

Fas-associated death domain

CIAP:

Cellular FLICE-like inhibitory protein

ICAM-1:

Intercellular adhesion molecule-1

Ikk:

Inhibitor of kB kinase

IL-1B:

Interleukin 1B

IP3R:

Inositol 1,4,5-trisphosphate receptor

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MEKK:

Mitogen-activated protein kinase kinase

MKK:

Dual specificity mitogen-activated protein kinase kinase

MMP:

Matrix metalloproteinases

NFAT:

Nuclear factor for activated T (NFAT)

NFkB:

Nuclear factor

NO:

Nitric oxide

RIP:

Receptor interacting protein

ROS:

Reactive oxygen species

SM-MHC:

Smooth muscle myosin heavy chain

SM-α-actin:

Smooth muscle alpha actin

SM22α:

Smooth muscle 22 alpha

SMC:

Smooth muscle cells

TNF-α:

Tumor necrosis factor alpha

TNFR:

Tumor necrosis factor receptor

TRADD:

TNFR-associated death domain

TRAF:

TNF receptor-associated factor

VCAM:

Vascular cell adhesion molecule-1

References

  1. Rinkel GJ. Natural history, epidemiology and screening of unruptured intracranial aneurysms. J Neuroradiol. 2008;35(2):99–103.

    Article  CAS  PubMed  Google Scholar 

  2. Komotar RJ, Zacharia BE, Mocco J, Connolly Jr ES. Controversies in the surgical treatment of ruptured intracranial aneurysms: the First Annual J. Lawrence Pool Memorial Research Symposium—controversies in the management of cerebral aneurysms. Neurosurgery. 2008;62(2):396–407.

    Article  PubMed  Google Scholar 

  3. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  4. Kassell NF, Torner JC. The International Cooperative Study on Timing of Aneurysm Surgery—an update. Stroke. 1984;15(3):566–70.

    Article  CAS  PubMed  Google Scholar 

  5. Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ronkainen A, Miettinen H, Karkola K, Papinaho S, Vanninen R, Puranen M, et al. Risk of harboring an unruptured intracranial aneurysm. Stroke. 1998;29(2):359–62.

    Article  CAS  PubMed  Google Scholar 

  7. Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42. doi:10.1016/S1474-4422(09)70126-7.

    Article  PubMed  Google Scholar 

  8. Rosenorn J, Eskesen V, Schmidt K, Espersen JO, Haase J, Harmsen A, et al. Clinical features and outcome in 1076 patients with ruptured intracranial saccular aneurysms: a prospective consecutive study. Br J Neurosurg. 1987;1(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  9. Saveland H, Sonesson B, Ljunggren B, Brandt L, Uski T, Zygmunt S, et al. Outcome evaluation following subarachnoid hemorrhage. J Neurosurg. 1986;64(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  10. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;366(9488):809–17. doi:10.1016/S0140-6736(05)67214-5.

    Article  PubMed  Google Scholar 

  11. Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.

    Article  PubMed  Google Scholar 

  12. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32(9):1659–76. doi:10.1038/jcbfm.2012.84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther. 2010;127(3):295–314. doi:10.1016/j.pharmthera.2010.05.002.

    Article  CAS  PubMed  Google Scholar 

  14. Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol. 1994;53(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  15. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65. doi:10.1038/sj.cdd.4401189.

    Article  CAS  PubMed  Google Scholar 

  16. Bonilla-Hernan MG, Miranda-Carus ME, Martin-Mola E. New drugs beyond biologics in rheumatoid arthritis: the kinase inhibitors. Rheumatology (Oxford). 2013;50(9):1542–50. doi:10.1093/rheumatology/ker192.

    Article  Google Scholar 

  17. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296(5573):1634–5. doi:10.1126/science.1071924.

    Article  CAS  PubMed  Google Scholar 

  18. Narayan N, Lee IH, Borenstein R, Sun J, Wong R, Tong G, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012;492(7428):199–204. doi:10.1038/nature11700.

    Article  CAS  PubMed  Google Scholar 

  19. Tracey KJ, Cerami A. Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol. 1993;9:317–43. doi:10.1146/annurev.cb.09.110193.001533.

    Article  CAS  PubMed  Google Scholar 

  20. Munro JM, Pober JS, Cotran RS. Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am J Pathol. 1989;135(1):121–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Robak T, Gladalska A, Stepien H. The tumour necrosis factor family of receptors/ligands in the serum of patients with rheumatoid arthritis. Eur Cytokine Netw. 1998;9(2):145–54.

    CAS  PubMed  Google Scholar 

  22. Wajant H, Scheurich P. Tumor necrosis factor receptor-associated factor (TRAF) 2 and its role in TNF signaling. Int J Biochem Cell Biol. 2001;33(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  23. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(5):969–79. doi:10.1161/ATVBAHA.110.207415.

    Article  CAS  PubMed  Google Scholar 

  24. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2005;180(1):11–7. doi:10.1016/j.atherosclerosis.2004.11.016.

    Article  CAS  PubMed  Google Scholar 

  25. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10(3):247–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chalouhi N, Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. Cigarette smoke and inflammation: role in cerebral aneurysm formation and rupture. Mediat Inflamm. 2013;2012:271582. doi:10.1155/2012/271582.

    Google Scholar 

  27. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–81. doi:10.1152/physrev.00024.2005.

    Article  CAS  PubMed  Google Scholar 

  28. Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab. 2013. doi:10.1038/jcbfm.2013.109.

    PubMed  Google Scholar 

  29. Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, et al. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab. 2013. doi:10.1038/jcbfm.2013.109. http://www.nature.com/jcbfm/journal/vaop/ncurrent/full/jcbfm2013109a.html.

    PubMed  Google Scholar 

  30. Maddahi A, Kruse LS, Chen QW, Edvinsson L. The role of tumor necrosis factor-alpha and TNF-alpha receptors in cerebral arteries following cerebral ischemia in rat. J Neuroinflammation. 2011;8:107. doi:10.1186/1742-2094-8-107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol. 2002;22(9):1370–80.

    Article  CAS  PubMed  Google Scholar 

  32. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol. 1996;16(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  33. Satoh H, Nakamura M, Satoh M, Nakajima T, Izumoto H, Maesawa C, et al. Expression and localization of tumour necrosis factor-alpha and its converting enzyme in human abdominal aortic aneurysm. Clin Sci (Lond). 2004;106(3):301–6. doi:10.1042/CS20030189.

    Article  CAS  Google Scholar 

  34. Xiong W, MacTaggart J, Knispel R, Worth J, Persidsky Y, Baxter BT. Blocking TNF-alpha attenuates aneurysm formation in a murine model. J Immunol. 2009;183(4):2741–6. doi:10.4049/jimmunol.0803164.

    Article  CAS  PubMed  Google Scholar 

  35. Skoog T, Dichtl W, Boquist S, Skoglund-Andersson C, Karpe F, Tang R, et al. Plasma tumour necrosis factor-alpha and early carotid atherosclerosis in healthy middle-aged men. Eur Heart J. 2002;23(5):376–83. doi:10.1053/euhj.2001.2805.

    Article  CAS  PubMed  Google Scholar 

  36. Edvinsson LI, Povlsen GK. Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab. 2011;31(7):1554–71. doi:10.1038/jcbfm.2011.70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Treska V, Topolcan O, Pecen L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin Chem Lab Med. 2000;38(11):1161–4. doi:10.1515/CCLM.2000.178.

    Article  CAS  PubMed  Google Scholar 

  38. Juvonen J, Surcel HM, Satta J, Teppo AM, Bloigu A, Syrjala H, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997;17(11):2843–7.

    Article  CAS  PubMed  Google Scholar 

  39. Hamano K, Li TS, Takahashi M, Kobayashi T, Shirasawa B, Ito H, et al. Enhanced tumor necrosis factor-alpha expression in small sized abdominal aortic aneurysms. World J Surg. 2003;27(4):476–80. doi:10.1007/s00268-002-6690-0.

    Article  PubMed  Google Scholar 

  40. Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS, et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery. 2005;57(3):558–64. discussion −64.

    Article  PubMed  Google Scholar 

  41. Jayaraman T, Paget A, Shin YS, Li X, Mayer J, Chaudhry H, et al. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture. Vasc Health Risk Manag. 2008;4(4):805–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke. 2009;40(3):942–51. doi:10.1161/STROKEAHA.108.532556.

    Article  CAS  PubMed  Google Scholar 

  43. Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke. 2010;42(1):173–8. doi:10.1161/STROKEAHA.110.590976.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Paolisso G, Rizzo MR, Mazziotti G, Tagliamonte MR, Gambardella A, Rotondi M, et al. Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Physiol. 1998;275(2 Pt 1):E294–9.

    CAS  PubMed  Google Scholar 

  45. Kirwan JP, Krishnan RK, Weaver JA, Del Aguila LF, Evans WJ. Human aging is associated with altered TNF-alpha production during hyperglycemia and hyperinsulinemia. Am J Physiol Endocrinol Metab. 2001;281(6):E1137–43.

    CAS  PubMed  Google Scholar 

  46. Anto RJ, Mukhopadhyay A, Shishodia S, Gairola CG, Aggarwal BB. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis. 2002;23(9):1511–8.

    Article  CAS  PubMed  Google Scholar 

  47. Starke RM, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez F, Hasan DM, et al. Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease. PLoS One. 2013;8(8):e71954. doi:10.1371/journal.pone.0071954.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sun SH, Tang WX, Liu C, Lin H, Yang HH. Effects of tumor necrosis factor alpha on proteolysis of respiratory muscles in rats with chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi. 2007;30(3):186–91.

    PubMed  Google Scholar 

  49. Lanzke N, Kleinwachter R, Kerschischnik S, Sargsyan L, Groneberg DA, Kamradt T, et al. Differential effects of ethanol on IFN-gamma- and TNF-alpha-producing splenic T lymphocytes in a murine model of gram-negative pneumonia. Addict Biol. 2007;12(1):59–68. doi:10.1111/j.1369-1600.2006.00042.x.

    Article  CAS  PubMed  Google Scholar 

  50. Beeftink MM, Ruigrok YM, Rinkel GJ, van den Bergh WM. Relation of serum TNF-alpha and TNF-alpha genotype with delayed cerebral ischemia and outcome in subarachnoid hemorrhage. Neurocrit Care. 2011;15(3):405–9. doi:10.1007/s12028-011-9556-1.

    Article  CAS  PubMed  Google Scholar 

  51. Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004;35(10):2287–93. doi:10.1161/01.STR.0000140636.30204.da.

    Article  PubMed  Google Scholar 

  52. Nuki Y, Matsumoto MM, Tsang E, Young WL, van Rooijen N, Kurihara C, et al. Roles of macrophages in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab. 2009;29(3):495–503. doi:10.1038/jcbfm.2008.136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hingorani A, Ascher E, Scheinman M, Yorkovich W, DePippo P, Ladoulis CT, et al. The effect of tumor necrosis factor binding protein and interleukin-1 receptor antagonist on the development of abdominal aortic aneurysms in a rat model. J Vasc Surg. 1998;28(3):522–6.

    Article  CAS  PubMed  Google Scholar 

  54. Kaneko H, Anzai T, Horiuchi K, Kohno T, Nagai T, Anzai A, et al. Tumor necrosis factor-alpha converting enzyme is a key mediator of abdominal aortic aneurysm development. Atherosclerosis. 2011;218(2):470–8. doi:10.1016/j.atherosclerosis.2011.06.008.

    Article  CAS  PubMed  Google Scholar 

  55. Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54(6):1337–44. doi:10.1161/HYPERTENSIONAHA.109.138297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fontanella M, Rainero I, Gallone S, Rubino E, Fenoglio P, Valfre W, et al. Tumor necrosis factor-alpha gene and cerebral aneurysms. Neurosurgery. 2007;60(4):668–72. doi:10.1227/01.NEU.0000255417.93678.49. discussion 72–3.

    Article  PubMed  Google Scholar 

  57. Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H. Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke. 1998;29(1):181–8. discussion 9.

    Article  CAS  PubMed  Google Scholar 

  58. Hara A, Yoshimi N, Mori H. Evidence for apoptosis in human intracranial aneurysms. Neurol Res. 1998;20(2):127–30.

    CAS  PubMed  Google Scholar 

  59. Jayaraman T, Marks AR. Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem. 2000;275(9):6417–20.

    Article  CAS  PubMed  Google Scholar 

  60. Hanafy KA, Grobelny B, Fernandez L, Kurtz P, Connolly ES, Mayer SA, et al. Brain interstitial fluid TNF-alpha after subarachnoid hemorrhage. J Neurol Sci. 2010;291(1–2):69–73. doi:10.1016/j.jns.2009.12.023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Moravan M, Segal BM. Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil. Neurology. 2009;72(4):337–40. doi:10.1212/01.wnl.0000341278.26993.22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Andreadou E, Kemanetzoglou E, Brokalaki C, Evangelopoulos ME, Kilidireas C, Rombos A, et al. Demyelinating disease following anti-TNFa treatment: a causal or coincidental association? Report of four cases and review of the literature. Case Rep Neurol Med. 2013;2013:671935. doi:10.1155/2013/671935.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Pardo CA, Buckley A, Thurm A, Lee LC, Azhagiri A, Neville DM, et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord. 2013;5(1):9. doi:10.1186/1866-1955-5-9.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 2012;24(3):314–8. doi:10.1016/j.yebeh.2012.03.035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Dean OM, Data-Franco J, Giorlando F, Berk M. Minocycline: therapeutic potential in psychiatry. CNS Drugs. 2012;26(5):391–401. doi:10.2165/11632000-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  66. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L. The prospects of minocycline in multiple sclerosis. J Neuroimmunol. 2011;235(1–2):1–8. doi:10.1016/j.jneuroim.2011.04.006.

    Article  CAS  PubMed  Google Scholar 

  67. Siciliano G, Carlesi C, Pasquali L, Piazza S, Pietracupa S, Fornai F, et al. Clinical trials for neuroprotection in ALS. CNS Neurol Disord Drug Targets. 2010;9(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  68. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neurology. 1999;53(3):457–65.

    Google Scholar 

  69. Tomas-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis. 2004;16(1):190–201. doi:10.1016/j.nbd.2004.01.010.

    Article  CAS  PubMed  Google Scholar 

  70. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.

    PubMed Central  PubMed  Google Scholar 

  71. Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;9(6):482–93. doi:10.1038/nrd3030.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Neurological Disorders and Stroke [1K08NS067072 to ASD].

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Dumont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starke, R.M., Raper, D.M.S., Ding, D. et al. Tumor Necrosis Factor-α Modulates Cerebral Aneurysm Formation and Rupture. Transl. Stroke Res. 5, 269–277 (2014). https://doi.org/10.1007/s12975-013-0287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0287-9

Keywords

Navigation