Skip to main content
Log in

Current status of optical coherence tomography

  • Current Opinion Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) is a novel imaging technology based on low-coherence interferometry that use near-infrared light in real-time, and allows cross-sectional in-situ visualization of the vessel wall at the microscopic level. OCT provides 10-fold higher resolution than intravascular ultrasound which is currently the most used modality for intra-coronary imaging. OCT offers the obvious advantages when characterizing precise plaque microstructure and distinguishing various type of plaques. OCT is also being assessed for its potential role in the understanding of neointimal coverage, vascular healing and the progression of atherosclerosis in coronary vasculature after stenting on the micron scale. These unique capabilities could be helpful in guiding coronary management and interventions. Recent improvement in next generation OCT technology, such as frequency-domain OCT, will allow for a simple imaging procedure, providing more useful information and complementing other modalities on both clinical and research applications for the cardiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prati F, Cera F, Ramazzoti V, Imola F, Guidice R, Albertucci M. Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. Eurointervention. 2007;3:365–70.

    Article  PubMed  Google Scholar 

  2. Kataiwa H, Tanaka A, Kitabata H, Imanishi T, Akasaka T. Safety and usefulness of non-occlusive image acquisition technique for optical coherence tomography. Circ J. 2008;72:1536–7.

    Article  PubMed  Google Scholar 

  3. Prati F, Cera M, Ramazzotti V, Imola F, Giudice R, Giudice M, et al. From bench to bedside: a novel technique of acquiring OCT images. Circ J. 2008;72:839–43.

    Article  PubMed  Google Scholar 

  4. Kataiwa H, Tanaka A, Kitabata H, Matsumoto H, Kashiwagi M, Kuroi A, et al. Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography. Int J Cardiol. 2009;5 (epub ahead of print).

  5. Kubo T, Asakura T. Optical coherence tomography imaging: current status and future perspectives. Cardiovasc Interv Ther. 2010;25:2–10.

    Article  Google Scholar 

  6. Takarada S, Imanishi T, Liu Y, Ikejima H, Tsujioka H, Kuroi A, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv. 2010;75:202–6.

    Article  PubMed  Google Scholar 

  7. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  8. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol. 2006;97:1172–5.

    Article  PubMed  Google Scholar 

  9. Kume T, Akasaka T, Kawamoto T, Ogasawara Y, Watanabe N, Toyota E, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.

    Article  PubMed  Google Scholar 

  10. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation. 2003;107:113–9.

    Article  PubMed  Google Scholar 

  11. Diaz-Sandoval LJ, Bouma BE, Tearney GJ, Jang IK. Optical coherence tomography as a tool for percutaneous coronary interventions. Catheter Cardiovasc Interv. 2005;65:492–6.

    Article  PubMed  Google Scholar 

  12. Templin C, Meyer M, Müller MF, Djonov V, Hlushchuk R, Dimova I, et al. Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy. Eur Heart J. 2010;31:1792–801.

    Article  PubMed  Google Scholar 

  13. Teramoto T, Ikeno F, Otake H, Lyons JK, van Beusekom HM, Fearon WF, et al. Intriguing peri-strut low-intensity area detected by optical coherence tomography after coronary stent deployment. Circ J. 2010;74:1257–9.

    Article  PubMed  Google Scholar 

  14. Takano M, Yamamoto M, Inami S, Murakami D, Ohba T, Seino Y, et al. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol. 2009;55:26–32.

    Article  PubMed  Google Scholar 

  15. Xie Y, Takano M, Murakami D, Yamamoto M, Okamatsu K, Inami S, et al. Comparison of neointimal coverage by optical coherence tomography of a sirolimus-eluting stent versus a bare metal stent 3 months after implantation. Am J Cardiol. 2008;102:27–31.

    Article  PubMed  CAS  Google Scholar 

  16. Takano M, Yamamoto M, Inami S, Murakami D, Seimiya K, Ohba T, et al. Long-term follow up evaluation after sirolimus-eluting stent implantation by optical coherence tomography: do uncovered struts persist? J Am Coll Cardiol. 2008;51:968–9.

    Article  PubMed  Google Scholar 

  17. Ishigami K, Uemura S, Morikawa Y, Soeda T, Okayama S, Nishida T, et al. Long-term follow-up of neointimal coverage of sirolimus-eluting stents—evaluation with optical coherence tomography. Circ J. 2009;73:2300–7.

    Article  PubMed  Google Scholar 

  18. Miyoshi N, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Comparison by optical coherence tomography of paclitaxel-eluting stents with sirolimus-eluting stents implanted in one coronary artery in one procedure. 6 month follow-up. Circ J. 2010;74:903–8.

    Google Scholar 

  19. Murakami D, Takano M, Yamamoto M, Inami S, Ohba T, Seino Y, et al. Advanced neointimal growth is not associated with a low risk of in-stent thrombus. Optical coherence tomographic findings after first-generation drug-eluting stent implantation. Circ J. 2009;73:1627–34.

    Article  PubMed  Google Scholar 

  20. Kim JS, Jang IK, Fan C, Kim TH, Kim JS, Park SM, et al. Evaluation in 3 months duration of neointimal coverage after zotarolimus-eluting stent implantation by optical coherence tomography: the ENDEAVOR OCT trial. JACC Cardiovasc Interv. 2009;2:1240–7.

    Article  PubMed  Google Scholar 

  21. Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27:1500–10.

    Article  PubMed  CAS  Google Scholar 

  22. Guagliumi G, Musumeci G, Sirbu V, Bezerra HG, Suzuki N, Fiocca L, et al. ODESSA Trial Investigators. Optical coherence tomography assessment of in vivo vascular response after implantation of overlapping bare-metal and drug-eluting stents. JACC Cardiovasc Interv. 2010;3:531–9.

    Article  PubMed  Google Scholar 

  23. Takano M, Inami S, Jang IK, Yamamoto M, Murakami D, Seimiya K, et al. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent 3 months after implantation. Am J Cardiol. 2007;99:1033–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kubo T, Imanishi T, Kitabata H, Kuroi A, Ueno S, Yamano T, et al. Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2008;1:475–84.

    Article  PubMed  Google Scholar 

  25. Gonzalo N, Barlis P, Serruys PW, Garcia-Garcia HM, Onuma Y, Ligthart J, et al. Incomplete stent apposition and delayed tissue coverage are more frequent in drug-eluting stents implanted during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction than in drug-eluting stents implanted for stable/unstable angina: insights from optical coherence tomography. JACC Cardiovasc Interv. 2009;2:445–52.

    Article  PubMed  Google Scholar 

  26. Kim JS, Fan C, Choi D, Jang IK, Lee JM, Kim TH, et al. Different patterns of neointimal coverage between acute coronary syndrome and stable angina after various types of drug-eluting stents implantation; 9-month follow-up optical coherence tomography study. Int J Cardiol. 2009;24 (epub ahead of print).

  27. Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158:284–93.

    Article  PubMed  Google Scholar 

  28. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152:e1–4.

    Article  PubMed  Google Scholar 

  29. Takarada S, Imanishi T, Kubo T, Tanimoto T, Kitabata H, Nakamura N, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491–7.

    Article  PubMed  CAS  Google Scholar 

  30. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed  Google Scholar 

  31. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  32. Takano M, Jang IK, Inami S, Yamamoto M, Murakami D, Okamatsu K, et al. In vivo comparison of optical coherence tomography and angioscopy for the evaluation of coronary plaque characteristics. Am J Cardiol. 2008;101:471–6.

    Article  PubMed  Google Scholar 

  33. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Implication of plaque color classification for assessing plaque vulnerability: a coronary angioscopy and optical coherence tomography investigation. JACC Cardiovasc Interv. 2008;1:74–80.

    Article  PubMed  Google Scholar 

  34. Fujii K, Kawasaki D, Masutani M, Okumura T, Akagami T, Sakoda T, et al. OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging. 2010;3:168–75.

    Article  PubMed  Google Scholar 

  35. Ozaki Y, Okumura M, Ismail TF, Naruse H, Hattori K, Kan S, et al. The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J. 2010;31:1470–6.

    Article  PubMed  Google Scholar 

  36. Sawada T, Shite J, Negi N, Shinke T, Tanino Y, Ogasawara D, et al. Factors that influence measurements and accurate evaluation of stent apposition by optical coherence tomography. Assessment using a phantom model. Circ J. 2009;73:1841–7.

    Article  PubMed  Google Scholar 

  37. Mizuno M, Takano M, Mizuno K. The effects of drug-eluting stent polymer on measurement of strut thickness by optical coherence tomography: in vitro comparison with bare-metal stent. Int J Cardiol. 2010;145:48–9.

    Article  PubMed  Google Scholar 

  38. Suzuki Y, Ikeno F, Koizumi T, Tio F, Yeung AC, Yock PG, et al. In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation. JACC Cardiovasc Interv. 2008;1:168–73.

    Article  PubMed  Google Scholar 

  39. Prati F, Zimarino M, Stabile E, Pizzicannella G, Fouad T, Rabozzi R, et al. Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model. Heart. 2008;94:217–21.

    Article  PubMed  CAS  Google Scholar 

  40. Terashima M, Rathore S, Suzuki Y, Nakamura Y, Kaneda H, Nasu K, et al. Accuracy and reproducibility of stent-strut thickness determined by optical coherence tomography. J Invasive Cardiol. 2009;21:602–5.

    PubMed  Google Scholar 

  41. Murata A, Wallace-Bradley D, Tellez A, Alviar C, Aboodi M, Sheehy A, et al. Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. JACC Cardiovasc Imaging. 2010;3:76–84.

    Article  PubMed  Google Scholar 

  42. Yamaguchi T, Terashima M, Akasaka T, Hayashi T, Mizuno K, Muramatsu T, et al. Safety and feasibility of an intravascular optical coherence tomography imagewire system in the clinical setting. Am J Cardiol. 2008;101:562–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenobu Inami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inami, S., Wang, Z., Ming-juan, Z. et al. Current status of optical coherence tomography. Cardiovasc Interv and Ther 26, 177–185 (2011). https://doi.org/10.1007/s12928-011-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-011-0057-0

Keywords

Navigation