Skip to main content

Advertisement

Log in

Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects

Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Medicinal plants are in huge demand since the consumption is widespread and ever-increasing globally. The conventional breeding programs are generally environmental dependent; prone to different biotic and abiotic stresses as well as the secondary metabolite content is too low to harvest. In this context, developing polyploid individuals artificially would be a remarkable approach to increase vigor and attain this objective. Polyploids often exhibit some morphological features that are different or greater in forms than their diploid progenies. Polyploidization can be induced by quite a few antimitotic agents. The most frequently used antimitotic chemicals are colchicine, trifluralin, and oryzalin. The whole method of induced chromosome doubling consists of a series of steps, including an induction phase, regrowth phase, and a confirmation technique to evaluate the rate of achievement. The induction phase depends on different factors, such as explant types, antimitotic agents, its different concentrations, and exposure durations. To evaluate the accomplishment of polyploidization, morphological or anatomical observations are recorded as a rapid method. However, chromosome count and flow cytometry are the most eminent method for absolute confirmation. Despite significant prospects of polyploidization, there has been very little research on medicinal plants. The current review gives an overview of the different parameters of in vitro chromosome doubling, the history of the technique, and progress made over the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BA:

N6-benzyladenine

BAP:

N6-benzylaminopurine

Ca:

callus

DMSO:

dimethyl sulfoxide

IAA:

indole-3-acetic acid

MS:

Murashige and Skoog (1962)

Mult Sht:

multiple shoot

NAA:

α-napthalene acetic acid

NS:

nodal segment

PGR:

plant growth regulator

RT:

root tip

SE:

somatic embryo

ST:

shoot tip

TDZ:

thidiazuron

FCM:

flow cytometry

References

  • Abdoli M, Moieni A, Badi HN. 2013. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiol. Plant. 35: 2075–2083

    Article  CAS  Google Scholar 

  • Acanda Y, Martinez O, Gonzalez MV, Prado MJ, Rey M. 2015. Highly efficient in vitro tetraploid plant production via colchicine treatment using embryogenic suspension cultures in grapevine (Vitis vinifera cv. Mencía). Plant Cell Tiss. Organ Cult. 123: 547–555

    Article  CAS  Google Scholar 

  • Adaniya S, Shirai D. 2001. In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci. Hortic. 88: 277–287

    Article  Google Scholar 

  • Allum JF, Bringloe DH, Roberts AV. 2007. Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep. 26: 1977–1984

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. 2010. Heterosis. The Plant Cell Online 22: 2105–2112

    Article  CAS  Google Scholar 

  • Blakeslee A, Avery A. 1937. Methods of inducing doubling of chromosomes in plants by treatment with colchicine. J. Hered. 28: 393–411

    Article  CAS  Google Scholar 

  • Bohanec B. 2003. Ploidy determination using flow cytometry. In: M Maluszynski, KJ Kasha, BP Forster, I Szorejko, eds, Doubled haploid production in crop plants. Kluwer, Dordrecht, pp. 397–403

    Chapter  Google Scholar 

  • Chen LL, Gao SL. 2007. In vitro tetraploid induction and generation of tetraploids from mixoploids in Astragalus membranaceus. Sci. Hortic. 112: 339–344

    Article  CAS  Google Scholar 

  • Cousin A, Heel K, Cowling WA, Nelson MN. 2009. An efficient high throughput flow cytometric method for estimating DNA ploidy level in plants. Cytom. Part A. 75A: 1015–1019

    Article  CAS  Google Scholar 

  • Dhooghe E, Denis S, Eeckhaut T, Reheul D, Van Labeke MC. 2009. In vitro induction of tetraploids in ornamental Ranunculus. Euphytica 168: 33–40

    Article  CAS  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Organ Cult. 104: 359–373

    Article  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Kundu S, Das PK. 2016. Acacia: An exclusive survey on in vitro propagation. Journal of the Saudi Society of Agricultural Sciences(Published Online). http://dx.doi.org/10.1016/j.jssas.2016.03.004

    Google Scholar 

  • Gao SL, Chen BJ, Zhu DN. 2002. In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tiss. Organ Cult. 70: 289–293

    Article  CAS  Google Scholar 

  • Gao SL, Zhu DN, Cai ZH, Xu DR. 1996. Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tiss. Organ Cult. 47: 73–77

    Article  CAS  Google Scholar 

  • Gomes SSL, Saldanha CW, Neves CS, Trevizani M, Raposo NRB, Notini MM, Santos MO, Campos JMS, Otoni WC, Viccini LF. 2014. Karyotype, genome size, and in vitro chromosome doubling of Pfaffia glomerata (Spreng.) Pedersen. Plant Cell Tiss. Organ Cult. 118: 45–56

    Google Scholar 

  • Greplova M, Polzerova H, Domkarova J. 2009. Intra-and interspcific crosses of Solanum materials after mitotic polyploidization in vitro. Plant Breed. 128: 651–657

    Article  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH. 2003. Role of duplicate genes in genetic robustness against null mutations. Nature 421: 63–66

    Article  CAS  PubMed  Google Scholar 

  • Hannweg K, Steyn W, Bertling I. 2016. In vitro-induced tetraploids of Plectranthus esculentus are nematode-tolerant and have enhanced nutritional value. Euphytica 207: 343–351

    Article  Google Scholar 

  • Hegde SN, Rameshsing CN, Vasundhara M. 2015. Characterization of Stevia rebaudiana Bertoni polyploids for growth and quality.Med. Plants 7: 188–195

    Google Scholar 

  • Heping H, Shanlin G, Lanlan C, Xiaoke J. 2008. In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cell Dev. Biol.-Plant 44: 448–455

    Article  Google Scholar 

  • Huang HP, Gao SL, Chen LL, Wei KH. 2010. In vitro tetraploid induction and generation of tetraploids from mixoploidy in Dioscorea zingiberensis. Pharmacogn. Mag. 6: 51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannicelli J, Elechosa MA, Juárez MA, Martínez A, Bugallo V, Bandoni AL, Escandóna AS, van Baren CM. 2016. Effect of polyploidization in the production of essential oils in Lippia integrifolia. Ind. Crop. Prod. 81: 20–29

    Article  CAS  Google Scholar 

  • Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N, Prathanturarug S. 2011. In vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss. Organ Cult. 107: 187–194

    Article  Google Scholar 

  • Liu SY, Chen SM, Chen Y, Guan ZY, Yin DM, Chen FD. 2011. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. Shows an improved level of abiotic stress tolerance. Sci. Hortic. 127: 411–419

    Article  CAS  Google Scholar 

  • Lynch M. 2007. The Origins of Genome Architecture. Sinauer: Sunderland, MA

    Google Scholar 

  • Maherali H, Walden AE, Husband BC. 2009. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 184: 721–731

    Article  CAS  PubMed  Google Scholar 

  • Majdi M, Karimzadeh G, Malboobi MA, Omidbaigi R, Mirzaghaderi G. 2010. Induction of tetraploidy to feverfew (Tanacetum parthenium Schulz-Bip.): morphological, physiological, cytological and phytochemical changes. Hort. Sci. 45: 16–21

    Google Scholar 

  • Majdi M, Karimzadeh G, Malboobi MA. 2014. Spatial and developmental expression of key genes of terpene biosynthesis in feverfew (Tanacetum parthenium). Biol. Plant. 58: 379–384

    Article  CAS  Google Scholar 

  • Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S. 2010. Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S. Afr. J. Bot. 76: 447–452

    Article  CAS  Google Scholar 

  • Moghbel N, Borujeni MK, Bernard F. 2015. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. J. Genet. Eng. Biotechnol.13: 1–6

    Article  Google Scholar 

  • Murashige T, Nakano R. 1966. Tissue culture as a potential tool in obtaining polyploid plants. J. Hered. 57: 114–118

    Article  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nagahatenna DSK, Peiris SE. 2008. Modification of plant architecture of Hemidesmus indicus (L.) R.Br. (Iramusu) by in vitro colchicine treatment. Trop. Agric. Res. 20: 234–242

    Google Scholar 

  • Nilanthi D, Chen XL, Zhao FC, Yang YS, Wu H. 2009. Induction of tetraploids from petiole explants through colchicine treatment in Echinacea purpurea L. J. Biomed. Biotechnol.343–485

    Google Scholar 

  • Nilanthi D, Yang YS. 2013. In vitro induction of octaploid from colchicine-treated tetraploid petiole explants of purple coneflower (echinacea purpurea L.). Trop. Agric. Res. Ext. 16: 25–30

    Google Scholar 

  • Omezzine F, Ladhari A, Nefzi F, Harrath R, Aouni M, Haouala R. 2012. Induction and flow cytometry identification of mixoploidy through colchicine treatment of Trigonella foenum-graecum L. Afr. J. Biotechnol. 11: 16434–16442

    CAS  Google Scholar 

  • Omran A, Mohammad BN. 2008. Polyploidization effect in two diploid cotton (Gossypium herbaceum L. and G. arboreum L.) species by colchicine treatments. Afr. J. Biotechnol.7: 102–108

    CAS  Google Scholar 

  • Planchais S, Glab N, Inzé D, Bergounioux C. 2000. Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett. 476: 78–83

    Article  CAS  PubMed  Google Scholar 

  • Roberts AV. 2007. The use of bead beating to prepare suspensions of nuclei for flow cytometry from fresh leaves, herbarium leaves, petals and pollen. Cytom. Part A. 71: 1039–1044

    Article  Google Scholar 

  • Rubuluza T, Nikolova RV, Smith MT, Hannweg K. 2007. In vitro induction of tetraploids in Colophospermum mopane by colchicine. S. Afr. J. Bot. 73: 259–261

    Article  Google Scholar 

  • Sadat HMG, Meftahizade H, Lotfi N, Rahimi V, Baniasadi B. 2011. Doubling the chromosome number of Salvia hains using colchicine: Evaluation of morphological traits of recovered plants. J. Med. Plants Res. 5: 4892–4898

    Google Scholar 

  • Shao J, Chen C, Deng X. 2003. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell Tiss. Organ Cult. 75: 241–246

    Article  CAS  Google Scholar 

  • Sharma H, Vashistha BD. 2015. Plant tissue culture: a biological tool for solving the problem of propagation of medicinally important woody plants-A review. Int. J. Adv. Res. 3: 402–411

    Google Scholar 

  • Sharma S, Thokchom R. 2014. A review on endangered medicinal plants of India and their conservation. J. Crop Weed 10: 205–218

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and angiosperm diversification. Am. J. Bot. 96: 336–348

    Article  PubMed  Google Scholar 

  • Soltis P, Soltis D. 2009. The role of hybridization in plant speciation. Ann. Rev. Plant Biol. 60: 561–588

    Article  CAS  Google Scholar 

  • Son TK, Lee SC, Chung IK. 2008. Colchicine-induced polyploidy and it’s agronomic characters in Bupleurum falcatum. Korean J. Medicinal Crop Sci. 16: 39–43

    Google Scholar 

  • Sourour A, Ameni B, Mejda C. 2014. Efficient production of tetraploid barley (hordeum vulgare L.) by colchicine treatment of diploid barley. J. Exp. Biol. Agric. Sci. 2: 113–119

    CAS  Google Scholar 

  • Tavan M, Mirjalili MH, Karimzadeh G. 2015. In vitro polyploidy induction: changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tiss. Organ Cult. 122: 573–583

    Article  CAS  Google Scholar 

  • Vaughn K. 2000. Anticytoskeletal herbicides. In: P Nick, ed., Plant microtubules, potential for biotechnology. Springer, Berlin, pp. 193–205

    Chapter  Google Scholar 

  • Widoretno W. 2016. In vitro induction and characterization of tetraploid Patchouli (Pogostemon cablin Benth.) plant. Plant Cell Tiss. Organ Cult. 125: 261–267

    Article  CAS  Google Scholar 

  • Yan HJ, Xiong Y, Zhang HY, He ML. 2016. In vitro induction and morphological characteristics of octoploid plants in Pogostemon cablin. Breed. Sci. 66: 169–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahedi AA, Hosseini B, Fattahi M, Dehghan E, Parastar H, Madani H. 2014. Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Bot. Stud. 55: 1–10

    Article  Google Scholar 

  • Zhang J, Zhang M, Deng X. 2007. Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tiss. Organ Cult. 89: 211–216

    Article  Google Scholar 

  • Zhang Q, Zhang F, Li B, Zhang L, Shi H. 2016. Production of Tetraploid Plants of Trollius chinensis Bunge Induced by Colchicine. Czech. J. Genet. Plant Breed. 52: 34–38

    Article  CAS  Google Scholar 

  • Zhang XY, Hu CG, Yao JL. 2010. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J. Plant Physiol. 167: 88–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabuddha Kundu.

Additional information

Both the authors contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salma, U., Kundu, S. & Mandal, N. Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 20, 9–19 (2017). https://doi.org/10.1007/s12892-016-0080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-016-0080-1

Key words

Navigation