Skip to main content
Log in

Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are involved in the regulation of stress-responsive gene expression and stress adaptation. Transcript expression of mature miR159 was studied in sugarcane leaves stressed for long-term (15 days) NaCl (150 mM) or iso-osmotic PEG 8000 (20% w/v) and for short period (up to 24 h) with NaCl (200 mM) or PEG (20% w/v). The results revealed no significant changes in transcript levels of the miRNA in response to the long-term stress however, short-term salt or PEG stress led to significant up-regulation over the control. Progressive increase in transcripts of the miRNA was observed under short-term PEG stress with exposure period. Using computational tools, various members of the MYB transcription factor family were predicted as the potential targets of miR159. The transcript expression of the MYB-related gene indicated up-regulation at 1 h of salt stress with concomitant slight downregulation of the miRNA. In addition, under short-term PEG stress, the transcript levels of MYB and miR159 were the opposite of each other, suggesting MYB as a potential target of miR159. To our knowledge, this is the first preliminary evidence on the involvement of miR159 in abiotic stress responses in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Herberd NP. 2004. Modulation of floral development by gibberellin-regulated microRNA. Development 131: 3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Axtell MJ, Bartel DP. 2005. Antiquity of microRNAs and their targets in land plants. Plant Cell 17: 1658–1673

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 1162: 281–297

    Article  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao, KQ, Livak KJ, Guegler KJ. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179

    Article  PubMed  CAS  Google Scholar 

  • Chen X. 2004. A microRNA as translational repressor of APETALA2 in Arabidopsis flower development. Science 303: 2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143: 1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R. 2009. Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854

    Article  PubMed  CAS  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC. 2008. Microarraybased analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 14: 836–843

    Article  PubMed  CAS  Google Scholar 

  • Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I. 2006. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 346: 1765–1771

    Article  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. 2003. Control of leaf morphogenesis by microRNAs. Nature 425: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Patade VY. 2009. Studies on salt stress responses of sugarcane (Saccharum officinarum L.) using physiological and molecular approaches. PhD Thesis, Pune University, Pune, India

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P. 2009. Halopriming imparts tolerance in sensitive sugarcane cultivar to salt and PEG induced drought stress. Agric. Ecosyst. Environ. 134: 24–28

    Article  CAS  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. 2008. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl. Acad. Sci. 1055: 1608–1613

    Article  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. microRNAs in plants. Genes Dev. 16: 1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Chua NH. 2007. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49: 592–606

    Article  PubMed  CAS  Google Scholar 

  • Rozen, S., Skaletsky, HJ. 2000. Primer3 on the www for general users and for biologist programmers. In S Krawetz, S Misener, eds, Bioinformatics Methods and Protocols: Methods in Molecular Biology 2000, Humana Press, Totowa, NJ. pp 365–386

    Google Scholar 

  • Rodrigues FA, de Laia ML, Zingaretti SM. 2009. Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci. 176: 286–302

    Article  CAS  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R. 2008. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim. Biophys. Acta. 1779: 743–748

    PubMed  CAS  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 12: 301–309

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK. 2007. MicroRNAs and short-interfering RNAs in plants. J. Integr. Plant Biol. 49: 817–826

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 1–12

    Article  CAS  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. 2006. Computational identification of microRNAs and their targets. Comput. Biol. Chem. 30: 395–407

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y. 2005. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 33: W701–W704

    Article  PubMed  CAS  Google Scholar 

  • Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX. 2007. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354: 585–590

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W. 2008. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta 1779: 780–788

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patade, V.Y., Suprasanna, P. Short-term salt and PEG stresses regulate expression of MicroRNA, miR159 in sugarcane leaves. J. Crop Sci. Biotechnol. 13, 177–182 (2010). https://doi.org/10.1007/s12892-010-0019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-010-0019-6

Key words

Navigation