Skip to main content

Advertisement

Log in

A Unique Oligonucleotide Probe Hybrid on Graphene Decorated Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Pork Meat Adulteration

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A new oligonucleotide-based electrochemical biosensor was developed to detect the Sus scrofa mitochondrial cytochrome b (cytb) gene based on an in silico designed probe using bioinformatics tools and validated in wet-lab experiments. Screen-printed carbon electrodes (SPCE) modified with graphene (Gr), and gold nanoparticles (AuNPs) composite were used as a detection platform. The nanocomposite was characterized based on morphological, structural, and electrochemical properties. The modified SPCE showed better conductance due to the synergistic effects of the composite elements, giving it a better detection range. The thiol-modified synthetic oligonucleotide probe was immobilized on a composite modified SPCE to facilitate hybridization with the reverse complementary (RC) oligonucleotide. The Sus scrofa oligonucleotide was identified based on hybridization induced electrochemical change in the presence of methylene blue (MB) as a redox indicator measured by deferential pulse voltammetry (DPV). The analytical results demonstrated that Gr and AuNPs were successfully fabricated on the SPCE surface, as indicated by morphological and structural characteristics, effective surface area, and electrochemical properties. The developed biosensor exhibited a selective response towards complementary oligonucleotides and could discriminate mismatches and non-complementary DNA both in synthetic oligos and DNA isolated from real samples. The modified electrode displayed good linearity for RC oligonucleotides in the range of 1 × 10–11 M to 5 × 10–6 M (R2 = 0.9765) with a limit of detection of 0.98 × 10–12 M. The detection capability of the modified electrode indicates that the proposed biosensor has the potential to be applied for real-time porcine sample detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. D.M. Klurfeld, What is the role of meat in a healthy diet? Anim. Front. 8(3), 5–10 (2018)

    Article  Google Scholar 

  2. F. Han, X. Huang, J.H. Aheto, D. Zhang, F. Feng, Detection of beef adulterated with pork using a low-cost electronic nose based on colorimetric sensors. Foods. 9, 193 (2020). https://doi.org/10.3390/foods9020193

  3. C. Alamprese, J.M. Amigo, E. Casiraghi, S.B. Engelsen, Identification and quantification of Turkey meat adulteration in fresh, fozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 121, 175–181 (2016)

    Article  CAS  Google Scholar 

  4. Y. Erwanto, A. Rohman, L. Arsyanti, Y. Pranoto, Identification of pig DNA in food products using polymerase chain reaction (PCR) for halal authentication-a review. Int. Food Res. J. 25(4), 1322–1331 (2018)

    CAS  Google Scholar 

  5. A. Doosti, P.G. Dehkordi, E. Rahimi, Molecular assay to fraud identification of meat products. J. Food Sci. Tech. 51(1), 148–152 (2014)

    Article  CAS  Google Scholar 

  6. A. Di Pinto, M. Bottaro, E. Bonerba, G. Bozzo, E. Ceci, P. Marchetti, A. Mottola, G. Tantillo, Occurrence of mislabeling in meat products using dna-based assay. J. Food Sci. Tech. 52(4), 2479–2484 (2015)

    Article  Google Scholar 

  7. A. Arnarson, Pork 101: Nutrition facts and health effects. Healthline. (2019). https://www.healthline.com/nutrition/foods/pork. Accessed 10 March 2022

  8. People for the Ethical Treatment of Animals, Top 10 Reasons Not to Eat Pigs. (2021). https://www.peta.org/living/food/top-10-reasons-eat-pigs/?v2=1. Accessed 15 April 2021

  9. J. Ha, S. Kim, J. Lee, S. Lee, H. Lee, Y. Choi, H. Oh, Y. Yoon, Identification of pork adulteration in processed meat products using the developed mitochondrial DNA-based primers. Korean J. Food Sci. Anim. Resour. 37(3), 464–468 (2017). https://doi.org/10.5851/kosfa.2017.37.3.464

    Article  Google Scholar 

  10. M.A.M. Hossain, S.M.K. Uddin, S. Sultana, A. Hashem, M. Rizou, T.M.S. Aldawoud, C.M. Galanakis, M.R. Johan, DNA-based methods for species identification in food forensic science. Food Toxicol. Forensics. (Elsevier Academic Press, 2020), pp. 181–211

  11. O. Abbas, M. Zadravec, V. Baeten, T. Mikuš, T. Lešić, A. Vulić, J. Prpić, L. Jemeršić, J. Pleadin, Analytical methods used for the authentication of food of animal origin. Food Chem. 246, 6–17 (2018)

    Article  CAS  Google Scholar 

  12. A.A. Aida, Y.C. Man, C. Wong, A. Raha, R. Son, Analysis of raw meats and fats of pigs using polymerase chain reaction for halal authentication. Meat Sci. 69(1), 47–52 (2005)

    Article  CAS  Google Scholar 

  13. G.-D. Kim, J.-K. Seo, H.-W. Yum, J.-Y. Jeong, H.-S. Yang, Protein markers for discrimination of meat species in raw beef, pork and poultry and their mixtures. Food Chem. 217, 163–170 (2017)

    Article  CAS  Google Scholar 

  14. S.M.K. Uddin, M.M. Hossain, Z.Z. Chowdhury, M.R.B. Johan, Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit. Contam. A 38(8), 1273–1288 (2021). https://doi.org/10.1080/19440049.2021.1925748

    Article  CAS  Google Scholar 

  15. S. Sultana, M.M. Hossain, N.N.A. Naquiah, M.E. Ali, Novel multiplex PCR-RFLP assay discriminates bovine, porcine and fish gelatin substitution in Asian pharmaceuticals capsule shells. Food Addit. Contam. A 35(9), 1662–1673 (2018)

    Article  CAS  Google Scholar 

  16. S. Rahmati, N.M. Julkapli, W.A. Yehye, W.J. Basirun, Identification of meat origin in food products–a review. Food Control 68, 379–390 (2016)

    Article  CAS  Google Scholar 

  17. Stanford University-Environment and Health Safety, Electrophoresis Safety. (2021). https://ehs.stanford.edu/reference/electrophoresis-safety. Accessed 27 May 2021

  18. Y. Hu, Regulatory concern of polymerase chain reaction (PCR) carryover contamination, in Polymerase Chain Reaction for Biomedical Applications. ed. by A. Samadikuchaksaraei (IntechOpen, London, 2016), pp. 57–68

    Google Scholar 

  19. M.E. Ali, M. Al Amin, M.A. Razzak, S.B. Abd Hamid, M.M. Rahman, N.A. Rashid, Short amplicon-length PCR assay targeting mitochondrial cytochrome b gene for the detection of feline meats in burger formulation. Food Anal. Method. 9(3), 571–581 (2016)

    Article  Google Scholar 

  20. M.E. Ali, N. Raifana Abdul Rashid, S. Bee Abd Hamid, S.A. Hossain, M.M. Hossain, I. Zaidul, Development and validation of short-amplicon length PCR assay for macaques meat detection under complex matrices. Int. J. Food Prop. 20(1), 231–245 (2017)

  21. H.N. Lubis, N.F. Mohd-Naim, N.N. Alizul, M.U. Ahmed, From market to food plate: current trusted technology and innovations in halal food analysis. Trends Food Sci. Tech. 58, 55–68 (2016)

    Article  CAS  Google Scholar 

  22. M. Al Mamun, Y.A. Wahab, M.M. Hossain, A. Hashem, M.R. Johan, Electrochemical biosensors with aptamer recognition layer for the diagnosis of pathogenic bacteria: barriers to commercialization and remediation. TrAC-Trend Anal. Chem. 116458 (2021)

  23. V. Kavita, DNA Biosensors-a review. J. Bioeng. Biomed. Sci. 7(2), 222 (1–5) (2017). https://doi.org/10.4172/2155-9538.1000222.

  24. H.-Z. Pan, H.-W. Yu, N. Wang, Z. Zhang, G.-C. Wan, H. Liu, X. Guan, D. Chang, Electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles and graphene for sensitive determination of Klebsiella Pneumoniae Carbapenemase. J. Biotechnol. 214, 133–138 (2015)

    Article  CAS  Google Scholar 

  25. A. Hashem, M.M. Hossain, M. Al Mamun, K. Simarani, M.R. Johan, Nanomaterials based electrochemical nucleic acid biosensors for environmental monitoring: a review. Appl. Surf. Sci. Adv. 4, 100064 (2021)

    Article  Google Scholar 

  26. A. Hashem, M.M. Hossain, A.R. Marlinda, M.A. Mamun, S. Sagadevan, Z. Shahnavaz, K. Simarani, M.R. Johan, Nucleic acid-based electrochemical biosensors for rapid clinical diagnosis: advances, challenges, and opportunities. Crit. Rev. Cl. Lab. Sci. 1–22 (2021)

  27. Y. Zhang, Q. Wei, The role of nanomaterials in electroanalytical biosensors: a mini review. J. Electroanal. Chem. 781, 401–409 (2016)

    Article  CAS  Google Scholar 

  28. I. Khalil, A. Hashem, A.R. Nath, N.M. Julkapli, W.A. Yehye, W.J. Basirun, DNA/nano based advanced genetic detection tools for authentication of species: strategies, prospects and limitations. Mol. Cell. Probe. 101758 (2021)

  29. J. Peña-Bahamonde, H.N. Nguyen, S.K. Fanourakis, D.F. Rodrigues, Recent Advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 16(1), 1–17 (2018)

    Article  Google Scholar 

  30. A. Gole, C. Dash, V. Ramakrishnan, S. Sainkar, A. Mandale, M. Rao, M. Sastry, Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17(5), 1674–1679 (2001)

    Article  CAS  Google Scholar 

  31. C.R. Raj, B.K. Jena, Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Chem. Commun. 15, 2005–2007 (2005)

    Article  Google Scholar 

  32. M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin, Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14(19), 5425–5429 (1998)

    Article  CAS  Google Scholar 

  33. Y. Li, H.J. Schluesener, S. Xu, Gold nanoparticle-based biosensors. Gold Bull. 43(1), 29–41 (2010)

    Article  Google Scholar 

  34. P. Jiang, Y. Wang, L. Zhao, C. Ji, D. Chen, L. Nie, Applications of gold nanoparticles in non-optical biosensors. Nanomaterials 8(12), 977 (2018)

    Article  Google Scholar 

  35. M.S. Artiles, C.S. Rout, T.S. Fisher, Graphene-based hybrid materials and devices for biosensing. Adv. Drug Deliver. Rev. 63(14–15), 1352–1360 (2011)

    Article  CAS  Google Scholar 

  36. N. Yusoff, S.V. Kumar, P. Rameshkumar, A. Pandikumar, M.M. Shahid, M. Ab Rahman, N.M. Huang, A facile preparation of titanium dioxide-iron oxide@silicon dioxide incorporated reduced graphene oxide nanohybrid for electrooxidation of methanol in alkaline medium. Electrochim. Acta 192, 167–176 (2016)

    Article  CAS  Google Scholar 

  37. M. More, C. Narkhede, S. Deshmukh, A. Gade, M. Rai, Species specific primer designing–an easy method for identification of Bacillus thuringiensis. Curr. Trends. Biotechnol. Pharm. 5(4), 1469–1472 (2011)

    CAS  Google Scholar 

  38. M. Farag, K. El-Bohi, S. Khalil, M. Alagawany, M. Arain, S. Khan, T. Ruchi, D. Kuldeep, Forensic applications of mitochondrial cytochrome b gene in the identification of domestic and wild animal species. J. Exp. Biol. Agric. Sci. 8(1), 1–8 (2020)

    Article  CAS  Google Scholar 

  39. A. Linacre, Capillary electrophoresis of mtDNA cytochrome b gene sequences for animal species identification. DNA Electrophoresis Protocols for Forensic Genetics (Springer, 2012), pp. 321–329.

  40. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10), 2731–2739 (2011)

    Article  CAS  Google Scholar 

  41. I.B. Nugroho, N.S.N. Handayani, In Primer design and in silico analysis using CLUSTALW and MUSCLE for L-arabinose Isomerase (araA) gene detection in thermophilic bacteria, AIP Conf. Proc. 1755 (AIP Publishing LLC: 140007, 2016). https://doi.org/10.1063/1.4958568

  42. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008)

    Article  CAS  Google Scholar 

  43. N.M. Huang, H.N. Lim, C.H. Chia, M.A. Yarmo, M.R. Muhamad, Simple room-temperature preparation of high-yield large-area graphene oxide. Int. J. Nanomed. 6, 3443–3448 (2011)

    Article  CAS  Google Scholar 

  44. M.M. Hossain, S.M.K. Uddin, S. Sultana, S.Q. Bonny, M.F. Khan, Z.Z. Chowdhury, M.R. Johan, M.E. Ali, Heptaplex polymerase chain reaction assay for the simultaneous detection of beef, buffalo, chicken, cat, dog, pork, and fish in raw and heat-treated food products. J. Agr. Food Chem. 67(29), 8268–8278 (2019)

    Article  CAS  Google Scholar 

  45. B. Subramanya, D.K. Bhat, Novel one-pot green synthesis of graphene in aqueous medium under microwave irradiation using a regenerative catalyst and the study of its electrochemical properties. New J. Chem. 39(1), 420–430 (2015)

    Article  CAS  Google Scholar 

  46. Y. Lu, H. Zhang, F. Wu, H. Liu, J. Fang, Size-tunable uniform gold octahedra: fast synthesis, characterization, and plasmonic properties. RSC Adv. 7(30), 18601–18608 (2017)

    Article  Google Scholar 

  47. L.R.F. Allen, J. Bard, Electrochemical methods: fundamental and applications, 2nd edn. (John Wiley & Sons. Inc., Hoboken, New Jersey, 2001)

    Google Scholar 

  48. O. González-Meza, E. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J. Escalante, M. Bárcena-Soto, Development of a Randles-Ševčík-like equation to predict the peak current of cyclic voltammetry for solid metal hexacyanoferrates. J. Solid State Electr. 23(11), 3123–3133 (2019)

    Article  Google Scholar 

  49. C.B. Ching, J. Abdullah, N.A. Yusof, Reduced graphene oxide/gold nanoparticles modified screen-printed electrode for the determination of palmitic acid. J. Sensors 2021, 1–14 (2021)

    Article  Google Scholar 

  50. E. Sedlackova, Z. Bytesnikova, E. Birgusova, P. Svec, A.M. Ashrafi, P. Estrela, L. Richtera, Label-free DNA biosensor using modified reduced graphene oxide platform as a dna methylation assay. Materials 13(21), 4936 (2020). https://doi.org/10.3390/ma13214936

    Article  CAS  Google Scholar 

  51. X. Jing, X. Cao, L. Wang, T. Lan, Y. Li, G. Xie, DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens. Bioelectron. 58, 40–47 (2014)

    Article  CAS  Google Scholar 

  52. N. Kusnin, N.A. Yusof, J. Abdullah, S. Sabri, F. Mohammad, S. Mustafa, N.A. Ab Mutalib, S. Sato, S. Takenaka, N.A. Parmin, Electrochemical sensory detection of Sus Scrofa mtDNA for food adulteration using hybrid ferrocenylnaphthalene diimide intercalator as a hybridization indicator. RSC Adv. 10(46), 27336–27345 (2020)

    Article  CAS  Google Scholar 

  53. X. Niu, W. Zheng, C. Yin, W. Weng, G. Li, W. Sun, Y. Men, Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of Listeria monocytogenes hly gene sequence. J. Electroanal. Chem. 806, 116–122 (2017)

    Article  CAS  Google Scholar 

  54. S. Hajihosseini, N. Nasirizadeh, M.S. Hejazi, P. Yaghmaei, A Sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater. Sci. Eng. C 61, 506–515 (2016)

    Article  CAS  Google Scholar 

  55. A. Benvidi, N. Rajabzadeh, M. Mazloum-Ardakani, M.M. Heidari, Comparison of impedimetric detection of DNA hybridization on chemically and electrochemically functionalized multi-wall carbon nanotubes modified electrode. Sensor. Actuat. B-Chem. 207, 673–682 (2015)

    Article  CAS  Google Scholar 

  56. J. Zhang, H.P. Lang, G. Yoshikawa, C. Gerber, Optimization of DNA hybridization efficiency by pH-driven nanomechanical bending. Langmuir 28(15), 6494–6501 (2012)

    Article  CAS  Google Scholar 

  57. Y.W. Hartati, A.A. Suryani, M. Agustina, S. Gaffar, A. Anggraeni, A gold nanoparticle–DNA bioconjugate–based electrochemical biosensor for detection of Sus scrofa mtDNA in raw and processed meat. Food Anal. Method. 12(11), 2591–2600 (2019)

    Article  Google Scholar 

  58. Y.W. Hartati, T.A. Setiawati, T. Sofyatin, F. Fitrilawati, A. Anggraeni, S. Gaffar, Electrochemical DNA biosensor for detection of pork (Sus scrofa) using screen printed carbon-reduced graphene oxide electrode. ScienceAsia 46(1), 72–79 (2020)

    Article  CAS  Google Scholar 

  59. B. Nikhil, J. Pawan, F. Nello, E. Pedro, Introduction to biosensors. Essays Biochem. 60(1), 1–8 (2016)

    Article  Google Scholar 

  60. S. Tanabe, E. Miyauchi, A. Muneshige, K. Mio, C. Sato, M. Sato, PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotech. Bioch. 71(7), 1663–1667 (2007)

    Article  CAS  Google Scholar 

  61. N.S. Karabasanavar, S. Singh, D. Kumar, S.N. Shebannavar, Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop. Food Chem. 145, 530–534 (2014)

    Article  CAS  Google Scholar 

  62. M.M. Hossain, M.E. Ali, S.B. Abd Hamid, S. Mustafa, M.N. Desa, I. Zaidul, Targeting double genes in multiplex PCR for discriminating bovine, buffalo and porcine materials in food chain. Food. Control. 73, 175–84 (2017)

    Article  CAS  Google Scholar 

  63. M.M. Hossain, M.E. Ali, S. Sultana, S.Q. Bonny, M.A. Kader, M.A. Rahman, Quantitative tetraplex real-time polymerase chain reaction assay with TaqMan probes discriminates cattle, buffalo, and porcine materials in food chain. J. Agr. Food Chem. 65(19), 3975–3985 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Nanotechnology and Catalysis Research Center, University of Malaya under grant No. PPSI-2020-HICOE-05 and RU003-2021 as well as Bangabandhu Science and Technology Fellowship Trust, Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Contributions

Abu Hashem: Conceptualization, Methodology, Validation, Investigation, Data analysis, Writing – original draft. Ab Rahman Marlinda: Supervision, Resources, Writing – review & editing. M. A. Motalib Hossain: Conceptualization, supervision, Resources, Writing – review & editing. Mohammad Al Mamun: Investigation, Writing – review & editing. Md. Shalauddin: Investigation, Writing – review & editing. Khanom Simarani: Conceptualization, supervision, Writing – review & editing. Mohd Rafie Johan: Supervision, Writing – review & editing, Funding acquisition.

Corresponding authors

Correspondence to Abu Hashem or Ab Rahman Marlinda.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Human Ethics

Not applicable.

Consent for Publication

The authors consent to the publication of identifiable details, which may include figures, and/or details within the text (“material”), in the Electrocatalysis.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, A., Marlinda, A.R., Hossain, M.A.M. et al. A Unique Oligonucleotide Probe Hybrid on Graphene Decorated Gold Nanoparticles Modified Screen-Printed Carbon Electrode for Pork Meat Adulteration. Electrocatalysis 14, 179–194 (2023). https://doi.org/10.1007/s12678-022-00779-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00779-7

Keywords

Navigation