Skip to main content
Log in

Fast and Inexpensive Synthesis of Multilayer Graphene Used as Pd Support in Alkaline Direct Ethanol Fuel Cell Anode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Multilayer graphene (G-US) and multilayer graphene muffled (Gm-US) produced by liquid exfoliation ultrasound were used as support for Pd nanoparticles with a load of 20 wt% for application in an alkaline direct ethanol fuel cell (ADEFC) anode. The multilayer graphene–based electrocatalyst (Pd/G-US) exhibited superior current density and less positive onset potential for ethanol oxidation reaction (EOR) than the commercial Pd/C (AA). Also, the Pd/G-US electrocatalyst showed the less positive onset potential for CO oxidation. In ADEFC experiments, the Pd/G-US catalyst exhibited a superior performance with 38 mW cm−2. The findings suggest that the defective graphene structure promotes electron transport, and the presence of oxygenated species increases hydrophilicity facilitating the oxidation of intermediates. Hence, the synthesized material can be considered as promising support for an anode in ADEFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Pehl, A. Arvesen, F. Humpenöder, A. Popp, E.G. Hertwich, G. Luderer, Nat. Energy 2, 939 (2017)

    Article  CAS  Google Scholar 

  2. S.K. Lee, G. Mogi, Renew. Sustain. Energy Rev. 91, 472 (2018)

    Article  Google Scholar 

  3. J. Hansen, R. Ruedy, M. Sato, K. Lo, Rev. Geophys. 48, RG4004 (2010)

  4. A.N. Geraldes, D. Furtunato da Silva, J.C. Martins da Silva, O. Antonio de Sá, E.V. Spinacé, A.O. Neto, M. Coelho dos Santos, J. Power Sources 275, 189 (2015)

    Article  CAS  Google Scholar 

  5. C.-Y. Huang, J.-S. Lin, W.-H. Pan, C.-M. Shih, Y.-L. Liu, S.J. Lue, J. Power Sources 303, 267 (2016)

    Article  CAS  Google Scholar 

  6. N. Muradov, T. Veziroglu, Int. J. Hydrogen Energy 33, 6804 (2008)

    Article  CAS  Google Scholar 

  7. J.C.M. Silva, R.F.B. De Souza, M.A. Romano, M. D’Villa-Silva, M.L. Calegaro, P. Hammer, A.O. Neto, M.C. Santos, J. Braz. Chem. Soc. 23, 1146 (2012)

    Article  CAS  Google Scholar 

  8. V. Bambagioni, C. Bianchini, Y. Chen, J. Filippi, P. Fornasiero, M. Innocenti, A. Lavacchi, A. Marchionni, W. Oberhauser, F. Vizza, Chemsuschem 5, 1266 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. J.P. Pereira, D.S. Falcão, V.B. Oliveira, A.M.F.R. Pinto, J. Power Sources 256, 14 (2014)

    Article  CAS  Google Scholar 

  10. V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, J. Power Sources 190, 241 (2009)

    Article  CAS  Google Scholar 

  11. M. Omrani, M. Goriaux, Y. Liu, S. Martinet, L. Jean-Soro, V. Ruban, Environ. Pollut. 257, 113477 (2020)

  12. A.M. Yousif, J. Chem. 2019, 1 (2019)

    Article  CAS  Google Scholar 

  13. F. Moura Souza, L. S. Parreira, P. Hammer, B. L. Batista, M. C. Santos, J. Solid State Electrochem. 22, 1495–1506 (2018)

  14. F. M. Souza, V. S. Pinheiro, T. C. Gentil, B. L. Batista, L. S. Parreira, M. C. Santos, J. Power Sources 493, 229694 (2021)

  15. J. Li, X. Liu, Q. Han, X. Yao, X. Wang, J. Mater. Chem. A 1, 1246 (2013)

    Article  CAS  Google Scholar 

  16. W.R.P. Barros, R.M. Reis, R.S. Rocha, M.R.V. Lanza, Electrochim. Acta 104, 12 (2013)

    Article  CAS  Google Scholar 

  17. F.M. Souza, J. Nandenha, V.H.A. Oliveira, E.C. Paz, V.S. Pinheiro, L.R. Aveiro, L.S. Parreira, J.C.M. Silva, B.L. Batista, A.O. Neto, M.C. Santos, Renew. Energy 150, 293 (2020)

    Article  CAS  Google Scholar 

  18. X. Wang, L. Zhang, RSC Adv. 9, 3693 (2019)

    Article  CAS  Google Scholar 

  19. H. Xu, B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Y. Shiraishi, Y. Du, P. Yang, Electrochim. Acta 245, 227 (2017)

    Article  CAS  Google Scholar 

  20. A. Jorio, L.G. Cançado, Phys. Chem. Chem. Phys. 14, 15246 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. S. Yang, S. Brüller, Z.-S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng, K. Müllen, J. Am. Chem. Soc. 137, 13927 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Röhrl, W. Peukert, Carbon N. Y. 48, 3196 (2010)

    Article  CAS  Google Scholar 

  23. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 5932, 1312–1314 (2009)

  25. F.S. Al-Hazmi, G.H. Al-Harbi, G.W. Beall, A.A. Al-Ghamdi, A.Y. Obaid, W.E. Mahmoud, Synth. Met. 200, 54 (2015)

    Article  CAS  Google Scholar 

  26. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 3, 538 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. O. Mondal, S. Mitra, M. Pal, A. Datta, S. Dhara, D. Chakravorty, Mater. Chem. Phys. 161, 123 (2015)

    Article  CAS  Google Scholar 

  28. J.N. Coleman, Acc. Chem. Res. 46, 14 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, Sukanta De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nat. Nanotechnol. 3, 563–568 (2008)

  30. M.D. Nguyen, L.T. Tran, Q.M. Nguyen, T.T. Nguyen, T.H.T. Vu, J. Chem. 2019, 1 (2019)

    Google Scholar 

  31. H. Xiao, J. Zhang, M. Zhao, T. Hu, J. Jia, H. Wu, Electrochim. Acta 297, 856 (2019)

    Article  CAS  Google Scholar 

  32. T. Wu, Y. Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, Y. Min, A.C.S. Appl, Mater. Interfaces 11, 5136 (2019)

    Article  CAS  Google Scholar 

  33. C. H. A. Tsang, D. Y. C. Leung, Solid State Sci. 75, 21–26 (2018)

  34. J.L. Tan, A.M. De Jesus, S.L. Chua, J. Sanetuntikul, S. Shanmugam, B.J.V. Tongol, H. Kim, Appl. Catal. A Gen. 531, 29 (2017)

    Article  CAS  Google Scholar 

  35. P. Wu, Y. Huang, L. Zhou, Y. Wang, Y. Bu, J. Yao, Electrochim. Acta 152, 68 (2015)

    Article  CAS  Google Scholar 

  36. M. Sabbaghan, H. Charkhan, M. Ghalkhani, J. Beheshtian, Res. Chem. Intermed. 45, 487 (2019)

    Article  CAS  Google Scholar 

  37. Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1227 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. H.-M. Ju, S.H. Huh, S.-H. Choi, H.-L. Lee, Mater. Lett. 64, 357 (2010)

    Article  CAS  Google Scholar 

  39. J. Nandenha, R.F.B. De Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 8, 9171 (2013)

    CAS  Google Scholar 

  40. F. M. Souza, P. Böhnstedt, V. S. Pinheiro, E. C. Paz, L. S. Parreira, B. L. Batista, M. C. Santos. ChemElectroChem 6, 21, 5396–5406 (2019)

  41. P. Cui, J. Lee, E. Hwang, H. Lee, Chem. Commun. 47, 12370 (2011)

    Article  CAS  Google Scholar 

  42. L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011)

    Book  Google Scholar 

  44. S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao, M. Jin, Diam. Relat. Mater. 58, 54 (2015)

    Article  CAS  Google Scholar 

  45. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. M. Barberio, P. Antici, Sci. Rep. 7, 12009 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. T. Somanathan, K. Prasad, K. Ostrikov, A. Saravanan, V. Krishna, Nanomaterials 5, 826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Mazurkiewicz-Pawlicka, M. Nowak, A. Malolepszy, A. Witowski, D. Wasik, Y. Hu, L. Stobinski, Nanomaterials 10, 32 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  49. N. Justh, B. Berke, K. László, L.M. Szilágyi, J. Therm. Anal. Calorim. 131, 2267 (2018)

    Article  CAS  Google Scholar 

  50. M. J. Gilleland, M. L. Bender, J. Biol. Chem. 251, 2, 498–502 (1976)

  51. S.V. Harb, S.H. Pulcinelli, C.V. Santilli, K.M. Knowles, P. Hammer, A.C.S. Appl, Mater. Interfaces 8, 16339 (2016)

    Article  CAS  Google Scholar 

  52. F.M. Souza, J. Nandenha, B.L.L. Batista, V.H.A.H.A. Oliveira, V.S.S. Pinheiro, L.S.S. Parreira, A.O.O. Neto, M.C. Santos, Int. J. Hydrogen Energy 43, 4505 (2018)

    Article  CAS  Google Scholar 

  53. L.S. Parreira, J.C.M. Silva, F.R. Simões, M.A.L. Cordeiro, R.H. Sato, E.R. Leite, M.C. dos Santos, ChemElectroChem 4, 1950 (2017)

    Article  CAS  Google Scholar 

  54. D. Schebarchov, S. C. Hendy, Phys. Rev. B 73, 121402 (2006)

  55. T. Pillo, R. Zimmermann, P. Steiner, S. Hüfner, J. Phys. Condens. Matter 9, 3987 (1997)

    Article  CAS  Google Scholar 

  56. P. Trucano, R. Chen, Nature 258, 136 (1975)

    Article  CAS  Google Scholar 

  57. L. Chen, P. Fleming, V. Morris, J.D. Holmes, M.A. Morris, J. Phys. Chem. C 114, 12909 (2010)

    Article  CAS  Google Scholar 

  58. F. M. Souza, P. Böhnstedt, V. S. Pinheiro, L. A. Oliveira, B. L. Batista, L. S. Parreira, R. A. Antunes, M. C. Santos, J. Electroanal. Chem. 858, 113824 (2020)

  59. Y.-H. Qin, Y. Li, T. Lam, Y. Xing, J. Power Sources 284, 186 (2015)

    Article  CAS  Google Scholar 

  60. Q. Liu, Y.R. Xu, A.J. Wang, J.J. Feng, J. Power Sources 302, 394 (2016)

    Article  CAS  Google Scholar 

  61. C.A. Ottoni, C.E.D. Ramos, R.F.B. de Souza, S.G. da Silva, E.V. Spinace, A.O. Neto, Int. J. Electrochem. Sci. 13, 1893 (2018)

    Article  CAS  Google Scholar 

  62. L.P.R. Moraes, B.R. Matos, C. Radtke, E.I. Santiago, F.C. Fonseca, S.C. Amico, C.F. Malfatti, Int. J. Hydrogen Energy 41, 6457 (2016)

    Article  CAS  Google Scholar 

  63. G.-M. Liao, C.-C. Yang, C.-C. Hu, Y.-L. Pai, S.J. Lue, J. Memb. Sci. 485, 17 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (2015/10314-8, 2017/00819-8, 2017/22976-0, 2020/14100-0, 2017/21846-6, 2017/10118-0, 2017/26288-1, 2017/10118-0, 2017/24742-7 and 2018/26307-9), CNPq (429727/2018-6), UFABC, and CAPES. The authors are grateful to the multiuser central facilities (UFABC) for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe M. Souza.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A simple, fast, and inexpensive synthesis method of graphene multilayer from graphite was presented to use as a support in ADEFC.

• Pd/G-US electrocatalyst exhibited superior current density compared to commercial Pd/C (AA).

• Pd/G-US electrocatalyst showed the less positive potential for onset of CO oxidation and EOR.

• Pd/G-US anode exhibited a superior energy performance with 38 mW cm−2.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, F.M., Lima, T.S., Böhnstedt, P. et al. Fast and Inexpensive Synthesis of Multilayer Graphene Used as Pd Support in Alkaline Direct Ethanol Fuel Cell Anode. Electrocatalysis 12, 715–730 (2021). https://doi.org/10.1007/s12678-021-00685-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00685-4

Keywords

Navigation