Skip to main content
Log in

Study of the Formic Acid Electrooxidation on Rhodium on Steady State Using a Flow Cell: Potential Dependence of the CO Coverage

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

An Author Correction to this article was published on 21 September 2020

This article has been updated

Abstract

The HCOOH electrooxidation reaction (FAO) was experimentally studied on rhodium electrode using a flow cell in a 0.5-M HCOOH + 0.5-M H2SO4 solution. It was obtained the steady-state current-potential curve by chronoamperometry, which demonstrated that the FAO is verified in the potential region 0.45 < E/V < 0.70. The amount of adsorbed CO on the electrode surface as a function of potential was quantified by stripping voltammetry after changing to a 0.50-M H2SO4 solution at closed electric circuit. It was established that the spontaneous dissociative adsorption of HCOOH on rhodium produces irreversibly adsorbed CO only for potential values E ≤ 0.40 V, and therefore, the FAO takes place in the absence of COad. These results can explain the current-potential profiles obtained when the FAO is studied by cyclic voltammetry at different values of the potential scan limits, where the behaviour is strongly influenced by the inhibition of reaction sites due to the adsorbed CO. A kinetic mechanism for the FAO on rhodium is proposed on the basis of the results obtained, which are also in agreement with recently published spectroscopic measurements.

The kinetics of the formic acid electrooxidation reaction (FAO) on rhodium electrode on steady state was studied. It was demonstrated that adsorbed CO is not a reaction intermediate, being only an inhibitor. A kinetic mechanism compatible with experimental as well as previous spectroscopic evidences was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 21 September 2020

    In the original publication of the article, there is a mistake regarding the adsorbed reaction intermediate HCOOad, which is correctly written in the equations, but in the text it is wrongly written as COOHad.

References

  1. A. Capon, R. Parsons, The oxidation of formic acid on noble metal electrodes: II. A comparison of the behavior of pure electrodes. J. Electroanal. Chem. 44, 239–254 (1973)

    CAS  Google Scholar 

  2. S.G. Sun, J. Clavilier, A. Bewick, The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: An EMIRS study. J. Electroanal. Chem. 240, 147–159 (1988)

    CAS  Google Scholar 

  3. H. Kita, H.W. Lei, Oxidation of formic acid in acid solution on Pt single-crystal electrodes. J. Electroanal. Chem. 388, 167–177 (1995)

    Google Scholar 

  4. T. Iwasita, X. Xia, E. Herrero, H.D. Liess, Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy. Langmuir 12, 4260–4265 (1996)

    CAS  Google Scholar 

  5. S.G. Sun, Y.Y. Yang, Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111), Pt(510) and Pt(911) single crystal electrodes. J. Electroanal. Chem. 467, 121–131 (1999)

    CAS  Google Scholar 

  6. G. Samjeské, A. Miki, S. Ye, A. Yamakata, Y. Mukouyama, H. Okamoto, M. Osawa, Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: A time-resolved surface-enhanced infrared study. J. Phys. Chem. B 109(49), 23509–23516 (2005)

    PubMed  Google Scholar 

  7. G. Samjeské, M. Osawa, Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time-resolved IR spectroscopy. Angew. Chem. Int. Ed. 44(35), 5694–5698 (2005)

    Google Scholar 

  8. G.L. Beltrame, T.E. Shubina, M.T.M. Kopper, Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. Chem. Phys. Chem. 6, 2597–2606 (2005)

    Google Scholar 

  9. G. Samjeské, A. Miki, S. Ye, M. Osawa, Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B 110(33), 16559–16566 (2006)

    PubMed  Google Scholar 

  10. Y.X. Chen, S. Ye, M. Heinen, Z. Jusys, M. Osawa, R.J. Behm, Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures. J. Phys. Chem. B 110(19), 9534–9544 (2006)

    CAS  PubMed  Google Scholar 

  11. Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Bridge-bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22(25), 10399–10408 (2006)

    CAS  PubMed  Google Scholar 

  12. Y.X. Chen, M. Heinen, Z. Jusys, R.J. Behm, Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation. ChemPhysChem 8(3), 380–385 (2007)

    CAS  PubMed  Google Scholar 

  13. X. Wang, Y. Tang, Y. Gao, T. Lu, Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell. J. Power Sources 175, 784–788 (2008)

    CAS  Google Scholar 

  14. S. Bong, S. Uhm, Y. Kim, J. Lee, H. Kim, Graphene supported Pd electrocatalysts for formic acid oxidation. Electrocatalysis 1, 139–143 (2010)

    CAS  Google Scholar 

  15. V. Grozovski, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes. ChemPhysChem 12(9), 1641–1644 (2011)

    CAS  PubMed  Google Scholar 

  16. M. Osawa, K. Komatsu, G. Samjeské, T. Uchida, T. Ikeshoji, A. Cuesta, C. Gutiérrez, The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew. Chem. Int. Ed. 50(5), 1159–1163 (2011)

    CAS  Google Scholar 

  17. A. Cuesta, G. Cabello, M. Osawa, C. Gutiérrez, Mechanism of the electrocatalytic oxidation of formic acid on metals. ACS Catal. 2, 728–738 (2012)

    CAS  Google Scholar 

  18. A. Cuesta, G. Cabello, F.W. Harlt, M. Escudero-Escribano, C. Vas-Domínguez, L.A. Kibler, M. Osawa, C. Gutierrez, Electrooxidation of formic acid on gold: An ATR-SEIRAS study of the role of adsorbed formate. Catal. Today 202, 79–86 (2013)

    CAS  Google Scholar 

  19. M. Rezaei, S.H. Tabaian, D.F. Haghshenas, The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electrooxidation. Electrocatalysis 5, 193–203 (2014)

    CAS  Google Scholar 

  20. H. Jeon, B. Jeong, J. Joo, Electrocatalytic oxidation of formic acid: Closing the gap between fundamental study and technical applications. Electrocatalysis 6, 20–32 (2015)

    CAS  Google Scholar 

  21. G.C. Luque, M.R. Gennero de Chialvo, A.C. Chialvo, Influence of spontaneous decomposition on the electrochemical formic acid oxidation on a nanostructured palladium electrode. Electrochem. Commun. 70, 69–72 (2016)

    CAS  Google Scholar 

  22. L.A. Kibler, M. Al-Shakran, Adsorption of formate on Au(111) in acid solution: Relevance for electrooxidation of formic acid. J. Phys. Chem. C 120, 16238–16245 (2016)

    CAS  Google Scholar 

  23. H. Okamoto, Y. Numata, T. Gojuki, Y. Mukouyama, Different behaviour of adsorbed bridge-bonded formate from that of current in the oxidation of formic acid on platinum. Electrochim. Acta 116, 263–270 (2014)

    CAS  Google Scholar 

  24. M.F. Mrozek, H. Luo, M.J. Weaver, Formic acid electroxidation on platinum-group metals: Is adsorbed carbon monoxide solely a catalytic poison? Langmuir 16, 8463–8469 (2000)

    CAS  Google Scholar 

  25. S. Zou, R. Gómez, M.J. Weaver, Coverage-dependent infrared spectroscopy of carbon monoxide on palladium (100) in aqueous solution: Adlayer phase transitions and electrooxidation pathways. Langmuir 15, 2931–2939 (1999)

    CAS  Google Scholar 

  26. L.W.H. Leung, A. Wieckowski, M.J. Weaver, In situ infrared spectroscopy of well-defined single-crystal electrodes: Adsorption and electrooxidation of CO on Pt(111). J. Phys. Chem. 92, 6985–6990 (1988)

    CAS  Google Scholar 

  27. S.L. Yau, X. Gao, S.C. Chang, B.C. Schardt, M.J. Weaver, Atomic-resolution scanning tunneling microscopy and infrared spectroscopy as combined in situ probes of electrochemical adlayer structure: Carbon monoxide on rhodium (111). J. Am. Chem. Soc. 113, 6049–6056 (1991)

    CAS  Google Scholar 

  28. L.M. Yang, S.L. Yau, The structures of iodine and carbon monoxide overlayers on Ir(111) electrodes: An in situ scanning tunneling microscopy study. J. Phys. Chem. B 104, 1769–1776 (2000)

    CAS  Google Scholar 

  29. S. Trasatti, O.A. Petrii, Real surface area measurements in electrochemistry. Pure Appl. Chem. 63, 711–734 (1991)

    CAS  Google Scholar 

  30. G.C. Luque, M.R. Gennero de Chialvo, A.C. Chialvo, Evidences of CO spillover at a Pt/Pd bimetallic interface during the formic acid oxidation reaction. Mater. Chem. Phys. 232, 34–38 (2019)

    CAS  Google Scholar 

  31. J. Sobrowski, P. Zelenay, The behaviour of formic acid on a rhodium electrode. J. Electroanal. Chem. 91, 309–320 (1978)

    Google Scholar 

  32. R.R. Adzic, A.V. Tripkovic, Optical and electrochemical study of electrocatálisis by foreign metal adatoms: Oxidation of formic acid on rhodium. J. Electroanal. Chem. 99, 43–53 (1979)

    CAS  Google Scholar 

  33. M. Choy de Martinez, B. Beden, F. Hahn, C. Lamy, Effect of the bulk concentration of formic acid on the distribution of the adsorbates at smooth rhodium electrode in acid medium: An EMIRS investigations. J. Electron Spectrosc. Relat. Phenom. 45, 153–160 (1987)

    CAS  Google Scholar 

  34. L.W.H. Leung, M.J. Weaver, Adsorption and electroxidation of some simple organic molecules on rhodium (111) as probed by real-time FTIR spectroscopy: Comparisons with platinum (111). J. Phys. Chem. 93, 7218–7226 (1989)

    CAS  Google Scholar 

  35. M.J. Weaver, S.C. Chang, L.W.H. Leung, X. Jiang, M. Rubel, M. Szklarczyk, D. Zurawski, A. Wieckowski, Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes. J. Electroanal. Chem. 327, 247–260 (1992)

    CAS  Google Scholar 

  36. F. Hahn, B. Beden, C. Lamy, Infrared reflectance spectroscopy study of the adsorption of formic acid at a rhodium electrode. J. Electroanal. Chem. 204, 315–327 (1986)

    CAS  Google Scholar 

  37. H. Luo, M.J. Weaver, A versatile surface Raman spectroelectrochemical flow cell: Applications to chemisorbate kinetics. J. Electroanal. Chem. 501, 141–150 (2001)

    CAS  Google Scholar 

  38. Y. Li, P. Diao, T. Jin, J. Sun, D. Xu, Shape-controlled electrodeposition of standing Rh nanoplates on indium tin oxide substrates and their electrocatalytic activity toward formic acid oxidation. Electrochim. Acta 83, 146–154 (2012)

    CAS  Google Scholar 

  39. Q. Xu, I.V. Pobelov, T. Wandlowski, A. Kuzume, ATR-SEIRAS study of formic acid adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4. J. Electroanal. Chem. 793, 70–76 (2017)

    CAS  Google Scholar 

  40. G.C. Luque, M.R. Gennero de Chialvo, A.C. Chialvo, Kinetic study of the formic acid oxidation on steady state using a flow cell. J. Electrochem. Soc. 164, H748–H754 (2017)

    CAS  Google Scholar 

  41. M.A. Montero, J.L. Fernández, M.R. Gennero de Chialvo, A.C. Chialvo, Characterization and kinetic study of a nanostructured rhodium electrode for the hydrogen oxidation reaction. J. Power Sources 254, 218–223 (2014)

    CAS  Google Scholar 

  42. G.C. Luque, M.R. Gennero de Chialvo, A.C. Chialvo, Formic acid electrooxidation on platinum. Resolution of the kinetic mechanism in steady state and evaluation of the kinetic constants. ChemistrySelect 3, 9768–9772 (2018)

    Google Scholar 

Download references

Funding

This work received financial support from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017-1340), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311) and Universidad Nacional del Litoral (UNL, CAI+D 2016 PIC 018LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel C. Chialvo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luque, G.C., Montero, M.A., Gennero de Chialvo, M.R. et al. Study of the Formic Acid Electrooxidation on Rhodium on Steady State Using a Flow Cell: Potential Dependence of the CO Coverage. Electrocatalysis 11, 405–412 (2020). https://doi.org/10.1007/s12678-020-00599-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00599-7

Keywords

Navigation