Skip to main content

Advertisement

Log in

Electrodeposited Ternary Fe-Mo-P as an Efficient Electrode Material for Bifunctional Water Splitting in Neutral pH

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Designing novel and cost-effective material for electrochemical water splitting in neutral pH are highly essential for the hydrogen production and useful fuel cell construction. Synthesis of the bifunctional and earth-abundant efficient catalyst systems for the same remains one of the biggest challenges to the science community. Herein, we report the electrodeposition of ternary Fe-Mo-P onto the surface of carbon cloth material to form a stable and highly active bifunctional catalyst towards electrochemical hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at pH 7. A set of catalysts were prepared by varying the relative atomic ratio of the elements and the best catalytic activity was observed with 60 atomic % Fe in the electroplating bath which rivals that of Pt/C in the overall electrochemical water splitting. The best catalyst also shows 24-h stability in the overall electrochemical splitting of water which indicates the potential of this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai, P. Wang, Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 5(24), 12379–12384 (2017)

    Article  CAS  Google Scholar 

  2. K. Kwak, W. Choi, Q. Tang, M. Kim, Y. Lee, D. Jiang, D. Lee, A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 8, 14723 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. M.M. Najafpour, A. Shirazi Amin, S.E. Balaghi, B. Deljoo, Y. Mousazade, T. Jafari, M. Aindow, S.L. Suib, Transformation of La 0.65 Sr 0.35 MnO 3 in electrochemical water oxidation. Int. J. Hydrog. Energy 42(12), 8560–8568 (2017)

    Article  CAS  Google Scholar 

  4. I. Spanos, A.A. Auer, S. Neugebauer, X. Deng, H. Tüysüz, R. Schlögl, Standardized benchmarking of water splitting catalysts in a combined electrochemical flow cell/inductively coupled plasma–optical emission spectrometry (ICP-OES) setup. ACS Catal. 7(6), 3768–3778 (2017)

    Article  CAS  Google Scholar 

  5. M.M. Younan, I.H.M. Aly, M.T. Nageeb, J. Appl. Electrochem. 32(4), 439–446 (2002)

    Article  CAS  Google Scholar 

  6. D.R. Liyanage, D. Li, Q. Cheek, H. Baydoun, S.L. Brock, Synthesis and oxygen evolution reaction (OER) catalytic performance of Ni2−xRuxP nanocrystals: enhancing activity by dilution of the noble metal. J. Mater. Chem. A 5(33), 17609–17618 (2017)

    Article  CAS  Google Scholar 

  7. Y. Zhan, M. Lu, S. Yang, Z. Liu, J.Y. Lee, The origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by iron substitution. ChemElectroChem 3(4), 615–621 (2016)

    Article  CAS  Google Scholar 

  8. T. Mittermeier, P. Madkikar, X. Wang, H.A. Gasteiger, M. Piana, Probing transition-metal silicides as PGM-free catalysts for hydrogen oxidation and evolution in acidic medium. Materials 10(6), 661 (2017)

    Article  PubMed Central  Google Scholar 

  9. A. Dutta, N. Pradhan, Developments of metal phosphides as efficient OER precatalysts. J. Phys. Chem. Lett. 8(1), 144–152 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 29, 1 (2017)

    Google Scholar 

  11. C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A.M. Asiri, X. Sun, J. Wang, L. Chen, Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 16(10), 6617–6621 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. X. Fang, L. Jiao, R. Zhang, H.L. Jiang, Porphyrinic metal–organic framework-templated Fe–Ni–P/reduced graphene oxide for efficient electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 9(28), 23852–23858 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. B. Zhang, Y.H. Lui, L. Zhou, X. Tang, S. Hu, An alkaline electro-activated Fe–Ni phosphide nanoparticle-stack array for high-performance oxygen evolution under alkaline and neutral conditions. J. Mater. Chem. A 5(26), 13329–13335 (2017)

    Article  CAS  Google Scholar 

  14. F. Safizadeh, N. Sorour, E. Ghali, G. Houlachi, Study of the hydrogen evolution reaction on Fe–Mo–P coatings as cathodes for chlorate production. Int. J. Hydrog. Energy 42(8), 5455–5463 (2017)

    Article  CAS  Google Scholar 

  15. H. Teller, O. Krichevski, M. Gur, A. Gedanken, A. Schechter, Ruthenium phosphide synthesis and electroactivity toward oxygen reduction in acid solutions. ACS Catal. 5(7), 4260–4267 (2015)

    Article  CAS  Google Scholar 

  16. J. Yu, Q. Li, Y. Li, C.Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016)

    Article  CAS  Google Scholar 

  17. A. Han, H. Chen, H. Zhang, Z. Sun, P. Du, Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J. Mater. Chem. A 4(26), 10195–10202 (2016)

    Article  CAS  Google Scholar 

  18. Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017)

    Article  CAS  Google Scholar 

  19. K. Ojha, M. Sharma, H. Kolev, A.K. Ganguli, Reduced graphene oxide and MoP composite as highly efficient and durable electrocatalyst for hydrogen evolution in both acidic and alkaline media. Catal. Sci. Technol. 7(3), 668–676 (2017)

    Article  CAS  Google Scholar 

  20. X. Liang, D. Zhang, Z. Wu, D. Wang, The Fe-promoted MoP catalyst with high activity for water splitting. Appl. Catal. A Gen. 524, 134–138 (2016)

    Article  CAS  Google Scholar 

  21. F. Safizadeh, N. Sorour, E. Ghali, G. Houlachi, Corrosion behavior of Fe-Mo and Fe-Mo-P cathodic coatings in the simulated electrolyte for sodium chlorate production. Electrochim. Acta 269, 340–349 (2018)

    Article  CAS  Google Scholar 

  22. R.K. Shervedani, A. Lasia, Study of the hydrogen evolution reaction on Ni-Mo-P electrodes in alkaline solutions. J. Electrochem. Soc. 145(7), 2219 (1998)

    Article  CAS  Google Scholar 

  23. S.F. Cafarova, A.S. Aliyev, M. Elrouby, N. Soltanova, D.B. Tagiyev, J. Electrochem, Sci. Eng. 5, 231 (2016)

    Google Scholar 

  24. D. Kosugi, T. Hagio, Y. Kamimoto, R. Ichino, Effect of the addition of molybdenum on the structure and corrosion resistance of zinc–iron plating. Coatings 7(12), 235 (2017)

    Article  CAS  Google Scholar 

  25. L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A.M. Asiri, X. Sun, High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem. Int. Ed. 56(4), 1064–1068 (2017)

    Article  CAS  Google Scholar 

  26. L. Xie, F. Qu, Z. Liu, X. Ren, S. Hao, R. Ge, G. Du, A.M. Asiri, X. Sun, L. Chen, In situ formation of a 3D core/shell structured Ni3N@Ni–Bi nanosheet array: an efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. J. Mater. Chem. A 5(17), 7806–7810 (2017)

    Article  CAS  Google Scholar 

  27. J. Hou, Y. Sun, S. Cao, Y. Wu, H. Chen, L. Sun, Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting. ACS Appl. Mater. Interfaces 9(29), 24600–24607 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A.M. Asiri, X. Sun, L. Chen, Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 4(8), 1840–1845 (2017)

    Article  CAS  Google Scholar 

  29. Y. Teng, X.-D. Wang, H.-Y. Chen, J.-F. Liao, W.-G. Li, D.-B. Kuang, Iron-assisted engineering of molybdenum phosphide nanowires on carbon cloth for efficient hydrogen evolution in a wide pH range. J. Mater. Chem. A 5(43), 22790–22796 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Research Authority of Ariel University, Israel, and the Israel Ministry of National Infrastructures, Energy and Water Recourses (grant number: 216-11-015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Schechter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Singh, R.K., Teller, H. et al. Electrodeposited Ternary Fe-Mo-P as an Efficient Electrode Material for Bifunctional Water Splitting in Neutral pH. Electrocatalysis 9, 682–688 (2018). https://doi.org/10.1007/s12678-018-0476-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0476-0

Keywords

Navigation