Skip to main content

Advertisement

Log in

Electrocatalytic Reduction of Carbon Dioxide using Sol-gel Processed Copper Indium Sulfide (CIS) Immobilized on ITO-Coated Glass Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Sol-gel processed copper indium sulfide (CIS) films have been processed on glass and transparent indium doped tin oxide (ITO)-coated glass electrodes by a straightforward layer by layer spin coating route yielding excellent film qualities with subsequent thermal annealing. Resulting films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis spectroscopy. We apply these films in an electrochemical cell as a working electrode and take a view on the reduction of carbon dioxide (CO2) to its energy richer carbon monoxide (CO) in acetonitrile solution containing 0.1 M (C4H9)4NPF6 supporting electrolyte saturated with CO2. CIS films exhibit pronounced electrochemical and photoelectrochemical activities. Concomitantly, we quantify the generation of CO, which starts to evolve at a threshold potential of −0.60 V vs normal hydrogen electrode (NHE). The calculated faradaic efficiency of the electrochemical reduction of CO2 into CO exceeds 20 (±1) % in an optimized thin-film structure.

Sol-gel processed copper indium sulfide (CIS) thin films have been processed on glass and indium doped tin oxide (ITO)-coated glass electrodes using layer by layer spin coating route yielding excellent film qualities with subsequent thermal annealing. Electrochemical and photoelectrochemical experiments performed in N2 and CO2 saturated acetonitrile solutions containing 0.1 M (C4H9)4NPF6 as an electrolyte and CIS-modified ITO as working electrode showed promising electrocatalytic and photoelectrocatalytic activity for the reduction of carbon dioxide (CO2) to its energy richer carbon monoxide (CO) with faradaic efficiency of about 20 (±1) %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Barber, Chem. Soc. Rev. 38, 185 (2009)

    Article  CAS  Google Scholar 

  2. D.C. Grills, E. Fujita, J. Phys. Chem. Lett. 1, 2709 (2010)

    Article  CAS  Google Scholar 

  3. M. Aresta, Carbon dioxide as a chemical feedstock, (WILEY_VCH Verlag GmbH & Co.KGaA, Weinheim 2010) pp1, ISBN:978-3-527-32475-0

  4. D.J. Darensbourg, Chem. Rev. 107, 2388 (2007)

    Article  CAS  Google Scholar 

  5. W. Leitner, Acc. Chem. Res. 35, 746 (2002)

    Article  CAS  Google Scholar 

  6. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43, 631 (2014)

    Article  CAS  Google Scholar 

  7. Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/)

  8. C.L. Quere, R.J. Andres, T. Boden, T. Conway, R.A. Houghton, J.I. House, G. Marland, G.P. Peters, G.R. van der Werf, A. Ahlstrom, R.M. Andrew, L. Bopp, J.G. Canadell, P. Ciais, S.C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A.K. Jain, C. Jourdain, E. Kato, R.F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M.R. Raupach, J. Schwinger, S. Sitch, B.D. Stocker, N. Viovy, S. Zaehle, N. Zeng, Earth Syst. Sci. Data 5, 165 (2013)

    Article  Google Scholar 

  9. P. Li, B. Ge, S. Zhang, S. Chen, Q. Zhang, Y. Zhao, Langmuir 24, 6567 (2008)

    Article  CAS  Google Scholar 

  10. D.H. Apaydin, E.D. Głowacki, E. Portenkirchner, N.S. Sariciftci, Angew. Chem. Int. Ed. 53, 6819 (2014)

    Article  CAS  Google Scholar 

  11. Y.J. Park, D.-Y. Kim, J.-W. Lee, D.-G. Huh, K.-P. Park, J.Y. Lee, H. Lee, PNAS 103, 12690 (2006)

    Article  CAS  Google Scholar 

  12. S. Bachu, Energy Convers. Manag. 43, 87 (2002)

    Article  CAS  Google Scholar 

  13. S. Bachu, Energy Convers. Manag. 41, 953 (2000)

    Article  CAS  Google Scholar 

  14. W.S. Han, B.J. McPherson, Energy Convers. Manag. 50, 2570 (2009)

    Article  CAS  Google Scholar 

  15. Z. Li, M. Dong, S. Li, S. Huang, Energy Convers. Manag. 47, 1372 (2006)

    Article  CAS  Google Scholar 

  16. G. Liu, A.V. Smirnov, Energy Convers. Manag. 50, 1586 (2009)

    Article  CAS  Google Scholar 

  17. F.S. Zeman, D.W. Keith, Phil. Trans. R. Soc. A 366, 3901 (2008)

    Article  CAS  Google Scholar 

  18. T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 107, 2365 (2007)

    Article  CAS  Google Scholar 

  19. I. Ganesh, Renew. Sust. Energ. Rev. 31, 221 (2014)

    Article  CAS  Google Scholar 

  20. G.A. Olah, Angew. Chem. Int. Ed. 44, 2636 (2005)

    Article  CAS  Google Scholar 

  21. Q. Li, Z. Wu, X. Li, Energy Convers. Manag. 50, 503 (2009)

    Article  CAS  Google Scholar 

  22. E.J. Wilson, T. Johnson, D.W. Keith, Environ. Sci. Technol. 37, 3476 (2003)

    Article  CAS  Google Scholar 

  23. M. Mikkelsen, M. Jørgensen, F.C. Krebs, Energy Environ. Sci. 3, 43 (2010)

    Article  CAS  Google Scholar 

  24. R.E. Smalley, MRS Bull. 30, 412 (2005)

    Article  Google Scholar 

  25. S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, A.C.S. Nano 4, 1259 (2010)

    Article  CAS  Google Scholar 

  26. Ş. Neaţu, J.A. Maciá-Agulló, H. Garcia, Int. J. Mol. Sci. 15, 5246 (2014)

    Article  Google Scholar 

  27. D.J. Boston, C. Xu, D.W. Armstrong, F.M. MacDonnell, J. Am. Chem. Soc. 135, 16252 (2013)

    Article  CAS  Google Scholar 

  28. I. Ganesh, Mater. Sci. Appl. 2, 1407 (2011)

    CAS  Google Scholar 

  29. E. Portenkirchner, J. Gasiorowski, K. Oppelt, S. Schlager, C. Schwarzinger, H. Neugebauer, G. Knör, N.S. Sariciftci, ChemCatChem 5, 1790 (2013)

    Article  CAS  Google Scholar 

  30. M. Jitaru, J. Univ. Chem. Technol. Metall. 42, 333 (2007)

    CAS  Google Scholar 

  31. E. Portenkirchner, K. Oppelt, D.A.M. Egbe, G. Knör, N.S. Sariciftci, Nano Mater. Energ. 2, 134 (2013)

    CAS  Google Scholar 

  32. G. Centi, S. Perathoner, G. Wine, M. Gangeri, Green Chem. 9, 671 (2007)

    Article  CAS  Google Scholar 

  33. B. P. Sullivan, K. Krist, H. E. Guard, electrochemical and electrocatalytic reactions of carbon dioxide (Elsevier 1993) p 14

  34. W. Li, ACS Symp. Ser. 1056, 55 (2010)

    CAS  Google Scholar 

  35. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem. Soc. Rev. 38, 89 (2009)

    Article  CAS  Google Scholar 

  36. T.W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, J. Am. Chem. Soc. 132, 2132 (2010)

    Article  CAS  Google Scholar 

  37. A. Gennaro, A.A. Isse, M.G. Severin, E. Vianello, I. Bhugunb, J.M. Saveant, J. Chem. Soc. Faraday Trans. 92, 3963 (1996)

    Article  CAS  Google Scholar 

  38. B.P. Sullivan, Platin. Met. Rev. 33, 2 (1989)

    CAS  Google Scholar 

  39. E. Portenkirchner, K. Oppelt, C. Ulbricht, D.A.M. Egbe, H. Neugebauer, G. Knör, N.S. Sariciftci, J. Org. Chem. 716, 19 (2012)

    Article  CAS  Google Scholar 

  40. S. Cosnier, A. Deronzier, J.C. Moutet, J. Electroanal. Chem. 207, 315 (1986)

    Article  CAS  Google Scholar 

  41. Y. Oh, H. Vrubel, S. Guidoux, X. Hu, Chem. Commun. 50, 3878 (2014)

    Article  CAS  Google Scholar 

  42. C. Costentin, M. Robert, J.-M. Savéant, Chem. Soc. Rev. 42, 2423 (2013)

    Article  CAS  Google Scholar 

  43. S. Siebentritt, Thin Solid Films 403–404, 1 (2002)

    Article  Google Scholar 

  44. N. Meyer, A. Meeder, D. Schmid, Thin Solid Films 515, 5979 (2007)

    Article  CAS  Google Scholar 

  45. F. Cui, L. Wang, Z. Xi, Y. Sun, D. Yang, J. Mater. Sci. Mater. Electron. 20, 609 (2009)

    Article  CAS  Google Scholar 

  46. B. Asenjo, C. Guillén, A.M. Chaparro, E. Saucedo, V. Bermudez, D. Lincot, J. Herrero, M.T. Gutiérrez, J. Phys. Chem. Solids 71, 1629 (2010)

    Article  CAS  Google Scholar 

  47. C. Mahendran, N. Suriyanarayanan, Physica B 405, 2009 (2010)

    Article  CAS  Google Scholar 

  48. T.T. John, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Vacuum 80, 870 (2006)

    Article  CAS  Google Scholar 

  49. M. Nanu, L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Thin Solid Films 431, 492 (2003)

    Article  Google Scholar 

  50. N. Naghavi, R. Henriquez, V. Laptev, D. Lincot, Appl. Surf. Sci. 222, 65 (2004)

    Article  CAS  Google Scholar 

  51. J. Yuan, C. Hao, Sol. Energy Mater. Sol. Cells 108, 170 (2013)

    Article  CAS  Google Scholar 

  52. J. Yuan, L. Zheng, C. Hao, RSC Adv. 4, 39435 (2014)

    Article  CAS  Google Scholar 

  53. F. Aslan, M.Z. Zarbali, B. Yesilata, I.H. Mutlu, Mater. Sci. Semicond. Process. 16, 138 (2013)

    Article  CAS  Google Scholar 

  54. A.W. Hassel, K. Fushimi, M. Seo, Electrochem. Commun. 1, 180 (1999)

    Article  CAS  Google Scholar 

  55. D.-Y. Lee, J.-H. Kim, Sol. Energy Mater. Sol. Cells 95, 245 (2011)

    Article  CAS  Google Scholar 

  56. A. Bollero, J.F. Trigo, J. Herrero, M.T. Gutiérrez, Thin Solid Films 517, 2167 (2009)

    Article  CAS  Google Scholar 

  57. J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972)

    Article  Google Scholar 

  58. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  59. Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao, C. Gao, J. Phys. Chem. C 119, 2963 (2015)

    Article  CAS  Google Scholar 

  60. K.R. Murali, M. Balasubramanian, J. Mater. Sci. Mater. Electron. 24, 3575 (2013)

    Article  CAS  Google Scholar 

  61. H. Zheng, Y. Sun, H. Wang, J. Liu, H. Yan, Mater. Lett. 86, 150 (2012)

    Article  CAS  Google Scholar 

  62. S.W. Shin, J.H. Han, J.Y. Lee, Y.C. Park, G.L. Agawane, A.V. Moholkar, M.-G. Gang, C.H. Jeong, J.H. Kim, J.H. Yun, Appl. Surf. Sci. 270, 572 (2013)

    Article  CAS  Google Scholar 

  63. H. Wang, L. Pilon, Electrochim. Acta 64, 130 (2012)

    Article  CAS  Google Scholar 

  64. V. Khomenko, E. Frackowiak, F. Béguin, Electrochim. Acta 50, 2499 (2005)

    Article  CAS  Google Scholar 

  65. Z.K. Lopez-Castillo, S.N.V.K. Aki, M.A. Stadtherr, J.F. Brennecke, Ind. Eng. Chem. Res. 45, 5351 (2006)

    Article  CAS  Google Scholar 

  66. C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Adv. Mater. 23, 2367 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Getachew Adam would like to acknowledge the Austrian Research Promotion Agency (FFG) (flex!PV KOOP-IF 838621) for the financial support, and Ferhat Aslan is grateful to the Turkish Council of Higher Education for the financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getachew Adam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, G., Aslan, F., Portenkirchner, E. et al. Electrocatalytic Reduction of Carbon Dioxide using Sol-gel Processed Copper Indium Sulfide (CIS) Immobilized on ITO-Coated Glass Electrode. Electrocatalysis 6, 405–413 (2015). https://doi.org/10.1007/s12678-015-0257-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0257-y

Keywords

Navigation