Skip to main content
Log in

Applicability of Electroanalysis for Monitoring Oxalic Acid (OA) Concentration During its Electrochemical Oxidation at Different Electrode Materials

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrochemical oxidation (EO) of oxalic acid (OA) has been studied in acidic media at Ti/PbO2, highly boron-doped diamond (BDD), Pt, and graphite electrodes by linear polarization and galvanostatic electrolyses applying a current of 60 mA cm−2. The concentration of OA during EO was monitored by differential pulse voltammetry (DPV) using glassy carbon electrode and the results were also confirmed by high-performance liquid chromatography (HPLC). The experimental results of galvanostatic electrolyses showed that the performances of the process dramatically depend on the anodic material and in particular, the removal efficiencies obtained at Ti/PbO2, graphite, BDD, and Pt anodes were 90, 85, 80, and 78 %, respectively. Furthermore, DPV analyses compared with HPLC method achieved good fit, confidence intervals, and limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Comninellis, C. Guohua (eds.), Electrochemistry for the environment (Springer, Berlin, 2009)

    Google Scholar 

  2. M. Panizza, G. Cerisola, Chem. Rev. 109, 6541 (2009)

    Article  CAS  Google Scholar 

  3. C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 12, 1324 (2006)

    Article  Google Scholar 

  4. G. Chen, Sep. Purif. Technol. 38, 11 (2004)

    Article  Google Scholar 

  5. S.A. Sargisyan, Y.B. Vasil’ev, Elektrokhimiya 18, 954 (1982)

    CAS  Google Scholar 

  6. S.A. Sargisyan, Y.B. Vasil’ev, Elektrokhimiya 18, 845 (1982)

    CAS  Google Scholar 

  7. M.J. Chollier-Brym, F. Epron, E. Lamy-Pitara, J. Barbier, J. Electroanal. Chem. 474, 147 (1999)

    Article  CAS  Google Scholar 

  8. M.J. Chollier-Brym, F. Epron, E. Lamy-Pitara, J. Barbier, Catal. Today 48, 291 (1999)

    Article  Google Scholar 

  9. S.A. Sargisyan, Y.B. Vasil’ev, Elektrokhimiya 18, 961 (1982)

    CAS  Google Scholar 

  10. J.W. Johnson, H. Wroblowa, J.O.’.M. Bockris, Electrochim. Acta 9, 639 (1964)

    Article  CAS  Google Scholar 

  11. J.W. Johnson, S.C. Mueller, W.J. James, Trans. Faraday Soc. 67, 2167 (1971)

    Article  CAS  Google Scholar 

  12. Y.B. Vasil’ev, S.A. Sarghisyan, Electrochim. Acta 31, 645 (1986)

    Article  Google Scholar 

  13. G. Inzelt, E. Szetey, Acta Chim. Acad. Sci. Hung. 3, 269 (1981)

    Google Scholar 

  14. G. Horanyi, D. Hegedüs, E.M. Rizmayer, J. Electroanal. Chem. 40, 393 (1972)

    Article  CAS  Google Scholar 

  15. S.N. Pron’kin, O.A. Petrii, G.A. Tsirlina, D.J. Schiffrin, J. Electroanal. Chem. 480, 112 (2000)

    Article  Google Scholar 

  16. N.V. Smirnova, G.A. Tsirlina, S.N. Pron’kin, O.A. Petrii, Russ. J. Electrochem. 35, 113 (1999)

    CAS  Google Scholar 

  17. C.A. Martinez-Huitle, S. Ferro, A. De Battisti, Electrochim. Acta 49, 4027 (2004)

    Article  CAS  Google Scholar 

  18. S. Ferro, C.A. Martínez-Huitle, A. De Battisti, J. Appl. Electrochem. 40, 1779 (2010)

    Article  CAS  Google Scholar 

  19. C.A. Martínez-Huitle, S. Ferro, A. De Battisti, J. Solid State Electrochem. Lett. 8, 35 (2005)

    Article  Google Scholar 

  20. C.A. Martínez-Huitle, S. Ferro, A. De Battisti, J. Appl. Electrochem. 35, 1087 (2005)

    Article  Google Scholar 

  21. C.A. Martínez-Huitle, S. Ferro, S. Reyna, M. Cerro-López, A. De Battisti, M.A. Quiroz, J. Braz. Chem. Soc. 19, 150 (2008)

    Article  Google Scholar 

  22. I.G. Casella, Electrochem. Acta 44, 3353 (1999)

    Article  CAS  Google Scholar 

  23. N.B. Morozova, G.E. Shcheblykina, A.V. Vvedenskii, Russ. J. Electrochem. 35, 310 (1999)

    CAS  Google Scholar 

  24. R. Albalat, E. Gomez, M. Sarret, E. Valles, Monatsh. Chem. 120, 651 (1989)

    Article  CAS  Google Scholar 

  25. Z. Alaune, R. Mazeikiene, Liet. TSR Mokslu Akad. Darb. Ser. B 2, 11 (1987)

    Google Scholar 

  26. C. Bock, A. Smith, B. MacDougall, Electrochem. Acta 48, 57 (2002)

    Article  CAS  Google Scholar 

  27. D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis, J. Appl. Electrochem. 30, 1345–1350 (2000)

    Article  CAS  Google Scholar 

  28. O. Scialdone, C. Guarisco, A. Galia, G. Filardo, G. Silvestri, C. Amatore, C. Sella, L. Thouin, J. Electroanal. Chem. 638, 293 (2010)

    Article  CAS  Google Scholar 

  29. O. Scialdone, Electrochim. Acta 54, 6140 (2009)

    Article  CAS  Google Scholar 

  30. O. Scialdone, S. Randazzo, A. Galia, G. Filardo, Electrochim. Acta 54, 1210 (2009)

    Article  CAS  Google Scholar 

  31. O. Scialdone, A. Galia, C. Guarisco, S. Randazzo, G. Filardo, Electrochim. Acta 53, 2095 (2008)

    Article  CAS  Google Scholar 

  32. M.F. Laker, A.F. Hofman, B.J.D. Meeuse, Clin. Chem. 26, 827 (1980)

    CAS  Google Scholar 

  33. S.M. Reddy, S.P. Higson, P.M. Vadgama, Anal. Chim. Acta 343, 59 (1997)

    Article  CAS  Google Scholar 

  34. M. Panizza, I. Duo, P.A. Michaud, G. Cerisola, C. Comninellis, Electrochem. Solid State Lett. 3, 429 (2000)

    Article  CAS  Google Scholar 

  35. Y. Einaga, R. Sato, H. Olivia, D. Shin, T.A. Ivandini, A. Fujishima, Electrochim. Acta 49, 3989 (2004)

    Article  CAS  Google Scholar 

  36. Y. Liu, J. Huang, D. Wang, H. Hou, T. You, Anal. Methods 7, 855 (2010)

    Article  Google Scholar 

  37. Y. Zheng, C.W. Yang, J. PU, Zhang Food Chem. 114, 1523 (2009)

    Article  CAS  Google Scholar 

  38. M. Panizza, G. Cerisola, Appl. Catal., B 75, 95 (2007)

    Article  CAS  Google Scholar 

  39. E. Desimoni, B. Brunetti, Anal. Bioanal. Chem. 400, 1729 (2011)

    Article  CAS  Google Scholar 

  40. J. Giner, Electrochim. Acta 4, 42–54 (1961)

    Article  CAS  Google Scholar 

  41. C.A. Martínez-Huitle, E. Vieira dos Santos, D. Medeiros de Araújo, M. Panizza, J. Electroanal. Chem. 674, 103 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

EGA and EVS gratefully acknowledge CAPES and PETROBRAS for PhD and Master Fellowships, respectively. The authors thank the financial support provided by PETROBRAS; they also thank Industrie De Nora S.p.A. (Milan, Italy) for providing the Ti/Pt electrodes. Financial support from National Council for Scientific and Technological Development (CNPq-Brazil) is gratefully acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Panizza or Carlos A. Martínez-Huitle.

Additional information

Marco Panizza and Carlos A. Martínez-Huitle contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panizza, M., Araújo, E.G., Santos, E.V. et al. Applicability of Electroanalysis for Monitoring Oxalic Acid (OA) Concentration During its Electrochemical Oxidation at Different Electrode Materials. Electrocatalysis 4, 267–273 (2013). https://doi.org/10.1007/s12678-013-0140-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0140-7

Keywords

Navigation