Skip to main content
Log in

Kinetic Model of Hydrogen Evolution at an Array of Au-Supported Catalyst Nanoparticles

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A model is presented for studying the electrocatalytic activity at an array of catalyst nanoparticles that is deposited on a catalytically inactive support material. The objective is to rationalize effects on apparent reactivity of sizes and packing densities of nanoparticles. In the current version, the focus of the model is on the contribution of the spillover effect of adsorbed hydrogen to the overall rate of the hydrogen evolution reaction. For nanoparticles of fixed size, the current density per catalyst surface area exhibits a peculiar maximum as a function of the surface particle density; the optimum particle density varies with the rate of spillover of adsorbed hydrogen from particle to support and with adsorbate surface diffusion. For fixed particle density, the current density per catalyst surface area increases strongly with decreasing particle size. The model was used to fit experimental current densities for different catalyst particle coverage at varying electrode potentials. A good agreement between experimental data and calculated results was found. The fits provide key parameters of surface processes on the catalyst/support system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c b :

Proton concentration in bulk solution (mol mL−1)

D s :

Diffusion coefficient (cm2 s−1)

i c :

Current generated at catalyst surface (mA)

i s :

Current generated at support surface (mA)

j 0 :

Current density per catalyst surface area (mA cm−2)

\( k_{\rm{c}}^{\rm{a}} \) :

Hydrogen adsorption rate for Volmer step in HER (s−1)

\( k_{\rm{c}}^{\rm{d}} \) :

Hydrogen desorption rate on catalyst surface (s−1)

\( k_{\rm{s}}^{\rm{d}} \) :

Hydrogen desorption rate on support surface (s−1)

L :

Separation distance of nanoparticles (nm)

r c :

Nanoparticle radius (nm)

r R :

Effective area radius (nm)

\( \alpha_{\rm{c}}^{\rm{a}} \) :

Charge transfer coefficient for Volmer reaction on catalyst

\( \alpha_{\rm{c}}^{\rm{d}} \) :

Charge transfer coefficient for Heyrovsky reaction on catalyst

\( \alpha_{\rm{s}}^{\rm{d}} \) :

Charge transfer coefficient for Heyrovsky reaction on support

γ s :

Atom density on support surface (cm−2)

γ c :

Atom density on catalyst surface (cm−2)

η :

Overpotential (mV)

θ s :

Hydrogen coverage at steady state

v :

Reaction order (Heyrovsky mechanism: 1, Tafel mechanism: 2)

ρ :

Dimensionless radial coordinate, ρ = r/r R

τ c :

Hydrogen relaxation time on catalyst surface (s)

τ s :

Hydrogen relaxation time on support surface (s)

Гc :

Catalyst coverage

References

  1. Eikerling M, Kornyshev AA, Kucernak AR (2007) Physics World 20:32–36

    CAS  Google Scholar 

  2. Andreaus B, Maillard F, Kocylo J, Savinova E, Eikerling M (2006) J Phys Chem B 110:21028–21040

    Article  CAS  Google Scholar 

  3. Andreaus B, Eikerling M (2008) Device and materials modeling in PEM fuel cells. In: Promislow KS, Paddison SJ (eds) Topics in applied physics, vol 113. Springer, New York, pp 41–90

    Google Scholar 

  4. Eikerling M, Malek K, Wang Q (2008) In: Zhang JJ (ed) PEM fuel cells catalysts and catalyst layers—fundamentals and applications. Springer, Berlin, pp 381–446

    Chapter  Google Scholar 

  5. Matsumoto T, Komatsu T, Nakano H, Arai K et al (2004) Catal Today 90:277–281

    Article  CAS  Google Scholar 

  6. Cho Y, Choi B, Cho Y, Park H, Sung Y (2007) Electrochem Commun 9:378–381

    Article  CAS  Google Scholar 

  7. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells. Wiley, Chichester

    Google Scholar 

  8. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Dekker, New York

    Book  Google Scholar 

  9. Malek K, Eikerling M, Wang Q, Navessin T, Liu Z (2007) J Phys Chem C 111:13627

    Article  CAS  Google Scholar 

  10. Xia ZT, Wang QP, Eikerling M, Liu ZS (2008) Can J Chem 86:657–667

    Article  CAS  Google Scholar 

  11. Liu J, Eikerling M (2008) Electrochim Acta 53:4435–4446

    Article  CAS  Google Scholar 

  12. Song DT, Wang QP, Liu ZS, Eikerling M, Xie Z, Navessin T, Holdcroft S (2005) Electrochim Acta 50:3347–3358

    Article  CAS  Google Scholar 

  13. Ficicilar B, Bayrakceken A, Eroglu I, Power J (2009) Sources 193:17–23

    Article  CAS  Google Scholar 

  14. Garcia A, Paganin V, Ticianelli E (2008) Electrochim Acta 53:4309–4315

    Article  CAS  Google Scholar 

  15. Martin Jacobus Johan Jak. Thesis. 1971

  16. Kumar S, Zou S (2006) Electrochem Commun 8:1151–1157

    Article  CAS  Google Scholar 

  17. Eikerling M, Meier J, Stimming U (2003) Z Phys Chem 217:395–414

    CAS  Google Scholar 

  18. Pandelov S, Stimming U (2007) Electrochim Acta 52:5548–5555

    Article  CAS  Google Scholar 

  19. Su L, Wu B (2004) J Electroanal Chem 565:1–6

    Article  CAS  Google Scholar 

  20. Liu W, Wu B, Cha C (1999) J Electroanal Chem 476:101–108

    Article  CAS  Google Scholar 

  21. Lasia A (2006) J Electroanal Chem 593:159–166

    Article  CAS  Google Scholar 

  22. Eikerling M, Meier J, Stimming U (2003) Z Phys Chem 217:395–414

    CAS  Google Scholar 

  23. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113–122

    Article  CAS  Google Scholar 

  24. Harding CJ, Kunz S, Habibpour V, Heiz U (2008) Chem Phys Lett 461:235–237

    Article  CAS  Google Scholar 

  25. Yang RT, Wang Y (2009) J Am Chem Soc 131:4224–4226

    Article  CAS  Google Scholar 

  26. Andreaus B, Eikerling M (2007) J Electroanal Chem 607:121–132

    Article  CAS  Google Scholar 

  27. Denisov SI, Trohidou KN (2002) Phys Status Solidi A 189:265–268

    Article  CAS  Google Scholar 

  28. He L, Chen C, Wang N, Zhou W, Guo L (2007) J Appl Phys 102:103911

    Article  Google Scholar 

  29. Surve M, Pryamitsyn V, Ganesan V (2006) Langmuir 22:969–981

    Article  CAS  Google Scholar 

  30. Tanaka T (2002) Methods of statistical physics. Cambridge University Press, Cambridge

    Google Scholar 

  31. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  32. Altmann SL, Barton W, Mallett CP (1978) J Solid State Phys 11:1801–1812

    Article  CAS  Google Scholar 

  33. Dechialvo M (1995) J Electroanal Chem 388:215–224

    Article  Google Scholar 

  34. Ludwig A (2006) ChemPhysChem 7:985–991

    Article  Google Scholar 

  35. Hong S, Rahman TS (2007) Phys Rev B 75:155405–155415

    Article  Google Scholar 

  36. Pajonk GM, Teichner SJ, Germain JE (eds) (1983) Spillover of adsorbed species. Elsevier, Amsterdam

    Google Scholar 

  37. Pozzo M, Alfe D (2009) Int J Hydrogen Energy 34:1922–1930

    Article  CAS  Google Scholar 

  38. Haug K, Jenkins T (2000) J Phys Chem B 104:10017–10023

    Article  CAS  Google Scholar 

  39. Triwahyono S, Jalil AA, Hattori H, Nat J (2007) Gas Chem 16:252–257

    Article  CAS  Google Scholar 

  40. Paul JF, Sautet P (1996) Phys Rev B 53:8015

    Article  CAS  Google Scholar 

  41. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2003) Surf Sci 540:5–11

    Article  CAS  Google Scholar 

  42. Ogura S, Fukutani K, Wilde M, Matsumoto M, Okano T, Okada M, Kasai T, Dino WA (2004) Surf Sci 566:755–760

    Article  Google Scholar 

  43. Karlberg G, Nørskov J. Private communication

  44. Polyanin AD (2002) Handbook of linear partial differential equation. Champman & Hall/CRC

  45. Carslaw HS, Jaeger JC (2004) Conduction of heat in solids. Oxford University Press, New York

    Google Scholar 

  46. Lebedev NN (1965) Special functions and their applications. Prentice Hall, New Jersey

    Google Scholar 

  47. Christmann K (1988) Surf Sci Rep 9:1–3

    Article  Google Scholar 

  48. Hammer B, Norskov JK (2000) Adv Catal 45:71–129

    Article  CAS  Google Scholar 

  49. Hammer B, Norskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  50. Patterson JD, Bailey BC (2007) Solid-state physics: introduction to the theory. Springer, Berlin

    Google Scholar 

  51. Roudgar A, Gross A (2003) Phys Rev B 67:033409

    Article  Google Scholar 

  52. Su L, Wu BL (2004) J Electroanal Chem 565:1–6

    Article  CAS  Google Scholar 

  53. Lasia A (2006) J Electroanal Chem 593:159–166

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Liya Wang and Michael Eeikerling gratefully acknowledge the financial support of this work by the Discovery Grants program of the Natural Sciences and Engineering Research Council of Canada and by the Accelerate BC Graduate Research Internship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Wang.

Appendix

Appendix

Using ρ = r/r R performing a Laplace transformation of Eq. 8 for ν= 1 gives

$$ s\tilde{\theta }\left( {\rho, s} \right) - \tilde{\theta }\left( {\rho, t = 0} \right) = \frac{1}{\rho }\frac{\partial }{{\partial \rho }}\left[ {\rho \frac{{\partial \tilde{\theta }\left( {\rho, s} \right)}}{{\partial \rho }}} \right] - k_{\rm{s}}^{\rm{d}}\tilde{\theta }\left( {\rho, s} \right) $$
(A1)

The general solution is

$$ s\tilde{\theta }\left( {\rho, s} \right) = A{K_0}\left( {\rho \sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right) + B{I_0}\left( {\rho \sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right) $$
(A2)

The Laplace transform of the boundary condition at \( {\rho_{\rm{c}}} = {{{r_{\rm{c}}}} \mathord{\left/{\vphantom {{{r_{\rm{c}}}} {{r_{\rm{R}}}}}} \right.} {{r_{\rm{R}}}}} \), Eq. 10, is

$$ \begin{array}{*{20}{c}} {{{\left. {\frac{{\partial \tilde{\theta }\left( {\rho, s} \right)}}{{\partial \rho }}} \right|}_{\rho = {\rho_{\rm{c}}}}}}{\begin{array}{*{20}{c}} { = \frac{{k_{\rm{c}}^{\rm{a}}}}{{2s}} + \frac{{k_{\rm{c}}^{\rm{a}} + k_{\rm{c}}^{\rm{d}}}}{2}\tilde{\theta }\left( {{\rho_{\rm{c}}},s} \right)} \\{ = - \sqrt {{s - \alpha }} A{K_1}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right) + \sqrt {{s - \alpha }} B{I_1}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right)} \\\end{array} } \\\end{array}, $$
(A3)

where the second step follows from Eq. A2.

The Laplace transform of the boundary condition at ρ = 1, Eq. 13, is

$$ \begin{array}{*{20}{c}} {{{\left. {\frac{{\partial \tilde{\theta }\left( {\rho, s} \right)}}{{\partial \rho }}} \right|}_{\rho = 1}}}{\begin{array}{*{20}{c}} { = 0} \\{ = - \sqrt {{s - \alpha }} A{K_1}\left( {\sqrt {{s - \alpha }} } \right) + \sqrt {{s - \alpha }} B{I_1}\left( {\sqrt {{s - \alpha }} } \right)} \\\end{array} } \\\end{array}, $$
(A4)

From Eqs. A3 and A4, we obtain

$$ \tilde{\theta }\left( {\rho, s} \right) = \frac{{k_{\rm{c}}^{\rm{a}}\left[ {{I_1}\left( {\sqrt {{s - \alpha }} } \right){K_0}\left( {\rho \sqrt {{s - \alpha }} } \right) + {K_1}\left( {\sqrt {{s - \alpha }} } \right){I_0}\left( {\rho \sqrt {{s - \alpha }} } \right)} \right]}}{{s\Delta (s)}} $$
(A5)

where

$$ \begin{gathered} \Delta (s) = 2\sqrt {{s - \alpha }} \left[ { - {I_1}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right){K_1}\left( {\sqrt {{s - \alpha }} } \right) + {K_1}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right){I_1}\left( {\sqrt {{s - \alpha }} } \right)} \right] \\+ \left( {k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}} \right)\left[ {{I_0}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right){K_1}\left( {\sqrt {{s - \alpha }} } \right) + {K_0}\left( {\sqrt {{s - \alpha }} {\rho_{\rm{c}}}} \right){I_1}\left( {\sqrt {{s - \alpha }} } \right)} \right]{ } \\\end{gathered} $$
(A6)

By inverse Laplace transformation of Eq. A5, \( {L^{ - 1}}\left\{ {\tilde{\theta }\left( {\rho, s} \right)} \right\} \), we get

$$ \theta \left( {\rho, t} \right) = \frac{1}{{2\pi i}}\int_{\gamma - i\infty }^{\gamma + i\infty } {{e^{st}}} \tilde{\theta }\left( {\rho, s} \right) $$
(A7)

The integrand is a single-valued function of s with a simple pole at s = 0 and simple poles at \( \sqrt {{s + k_{\rm{s}}^{\rm{d}}}} = - \alpha_n^2 \), where ±α n are the roots of

$$ \begin{gathered} 2s\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} \left[ {{I_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right){K_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right) - {K_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right){I_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right)} \right] + \hfill \\s\left( {k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}} \right)\left[ {{K_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right){I_0}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right) + {I_1}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} } \right){K_0}\left( {\sqrt {{s + k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right)} \right] = 0 \hfill \\\end{gathered} $$
(A8)

The residue at the pole s = 0 gives the stationary solution, θ s(ρ)

$$ \begin{gathered} \hfill \\{\theta_{\rm{s}}}\left( \rho \right) = \frac{{k_{\rm{c}}^{\rm{a}}\left[ {{I_0}\left( {\rho \sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right){K_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right) + {K_0}\left( {\rho \sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right){I_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right)} \right]}}{{2\sqrt {{k_{\rm{s}}^{\rm{d}}}} \left[ { - {I_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right){K_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right) + {I_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right){K_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right)} \right] + \left( {k_{\rm{c}}^{\rm{a}} + k_{\rm{c}}^{\rm{d}}} \right)\left[ {{I_0}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right){K_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right) + {I_1}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} } \right){K_0}\left( {\sqrt {{k_{\rm{s}}^{\rm{d}}}} {\rho_{\rm{c}}}} \right)} \right]}} \hfill \\\end{gathered} $$
(A9)

To find the residues at \( s = - \kappa \alpha_{\rm{n}}^2 \), we need

$$ \begin{array}{*{20}c} {{\left[ {s\frac{{d\Delta }} {{ds}}} \right]}_{{s = - \kappa \alpha ^{2}_{{\text{n}}} }} = {\left[ {\frac{s} {{2{\sqrt {s + k^{{\text{d}}}_{{\text{s}}} } }}}\frac{{d\Delta }} {{d\mu }}} \right]}_{{\mu = i\alpha }} } \\ { = \frac{{ - \alpha ^{2}_{{\text{n}}} - k^{{\text{d}}}_{{\text{s}}} }} {{2i\alpha }}{\left\{ {\begin{array}{*{20}l} {{\rho _{{\text{c}}} \mu K_{1} {\left( \mu \right)}{\left[ {\mu I_{0} {\left( {\mu \rho _{{\text{c}}} } \right)} - {\left( {k^{{\text{a}}}_{{\text{c}}} + k^{{\text{d}}}_{{\text{c}}} } \right)}I_{1} {\left( {\mu \rho _{{\text{c}}} } \right)}} \right]}} \hfill} \\ {{ + \mu K_{0} {\left( \mu \right)}{\left[ {\mu I_{1} {\left( {\mu \rho _{{\text{c}}} } \right)} - {\left( {k^{{\text{a}}}_{{\text{c}}} + k^{{\text{d}}}_{{\text{c}}} } \right)}I_{0} {\left( {\mu \rho _{{\text{c}}} } \right)}} \right]}} \hfill} \\ {{ - \rho _{{\text{c}}} \mu I_{1} {\left( \mu \right)}{\left[ {\mu K_{0} {\left( {\mu \rho _{{\text{c}}} } \right)} - {\left( {k^{{\text{a}}}_{{\text{c}}} + k^{{\text{d}}}_{{\text{c}}} } \right)}K_{1} {\left( {\mu \rho _{{\text{c}}} } \right)}} \right]}} \hfill} \\ {{ + \mu I_{0} {\left( \mu \right)}{\left[ {\mu K_{1} {\left( {\mu \rho _{{\text{c}}} } \right)} - {\left( {k^{{\text{a}}}_{{\text{c}}} + k^{{\text{d}}}_{{\text{c}}} } \right)}K_{0} {\left( {\mu \rho _{{\text{c}}} } \right)}} \right]}} \hfill} \\ \end{array} } \right\}}} \\ \end{array} _{{\mu = i\alpha _{n} }} $$
(A10)

According to the properties of Bessel function, the recurrence Eq. A8, and the Wronskian relation, we find

$$ \begin{array}{*{20}{c}} {{{\left[ {s\frac{{{\text{d}}\Delta \left( {s + k_{\rm{s}}^{\rm{d}}} \right)}}{{{\hbox{d}}s}}} \right]}_{s + k_{\rm{s}}^{\rm{d}} = - \kappa \alpha_n^2}}}{\begin{array}{*{20}{c}} { = \frac{1}{2}\xi \alpha_n^2 - \frac{1}{{2\xi }}\left[ {\alpha_n^2 + \frac{{\left( {k_{\rm{s}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}} \right)}}{4}} \right]} \\{ = \frac{{F\left( {{\alpha_n}} \right)}}{{2{\alpha_n}{J_1}\left( {{\alpha_n}} \right)\left[ {{\alpha_n}{J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) + \frac{{\left( {k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}} \right)}}{2}{J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]}}} \\\end{array} } \\\end{array} $$
(A11)

where

$$ F\left( {{\alpha_n}} \right) = \alpha_n^2{\left[ {{\alpha_n}{J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) + \frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{2}{J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]^2} + \alpha_n^2\left[ {\alpha_n^2 + \frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{4}J_1^2\left( {{\alpha_n}} \right)} \right] $$
(A12)

Therefore,

$$ \theta \left( {\rho, \tau } \right) = {\theta_{\rm{s}}}\left( \rho \right) - \pi \sum\limits_{n{ = 1}}^\infty {\frac{{{e^{\left( { - k_{\rm{s}}^{\rm{d}} - \alpha_n^2} \right)t}}}}{{1 + \frac{{k_{\rm{s}}^{\rm{d}}}}{{\alpha_n^2}}}}\frac{{{J_0}\left( {\rho {\alpha_n}} \right)\left[ {\frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{{k_{\rm{c}}^{\rm{a}}}}{Y_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - \frac{{{\alpha_n}}}{{k_{\rm{s}}^{\rm{a}}}}{Y_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right] - {Y_0}\left( {\rho {\alpha_n}} \right)\left[ {\frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{{2k_{\rm{c}}^{\rm{a}}}}{J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - \frac{{{\alpha_n}}}{{k_{\rm{c}}^{\rm{a}}}}{J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]}}{{{{\left[ {\frac{{2{\alpha_n}{J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)}}{{k_{\rm{c}}^{\rm{a}}{J_1}\left( {{\alpha_n}} \right)}} + \left( {\frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{{k_{\rm{c}}^{\rm{a}}}}} \right)\frac{{{J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)}}{{{J_1}\left( {{\alpha_n}} \right)}}} \right]}^2} - {{\left( {\frac{{2{\alpha_n}}}{{k_{\rm{c}}^{\rm{a}}}}} \right)}^2} - {{\left( {\frac{{k_{\rm{c}}^{\rm{d}} + k_{\rm{s}}^{\rm{d}}}}{{k_{\rm{c}}^{\rm{a}}}}} \right)}^2}}}} $$
(A13)

Using the definition \( \xi = \frac{{k_{\rm{c}}^{\rm{a}} + k_{\rm{c}}^{\rm{d}}}}{{k_{\rm{c}}^{\rm{a}}}} \) and \( \frac{{k_{\rm{c}}^{\rm{a}} + k_{\rm{s}}^{\rm{d}}}}{{k_{\rm{c}}^{\rm{a}}}} = \frac{{ - 2{\alpha_n}\left[ {{Y_1}\left( {{\alpha_n}} \right){J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - {J_1}\left( {{\alpha_n}} \right){Y_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]}}{{k_{\rm{c}}^{\rm{a}}\left[ {{Y_1}\left( {{\alpha_n}} \right){J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - {J_1}\left( {{\alpha_n}} \right){Y_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]}} = \frac{{ - 2{\alpha_n}}}{{k_{\rm{c}}^{\rm{a}}}}C\left( {{\alpha_n}} \right) \) in Eq. A13 gives

$$ \theta \left( {\rho, t} \right) = {\theta_{\rm{s}}}\left( \rho \right) - \frac{\pi }{\xi }\sum\limits_{n = 1}^\infty {\frac{{{e^{\left( { - k_{\rm{s}}^{\rm{d}} - \alpha_n^2} \right)t}}}}{{1 + \frac{{k_{\rm{s}}^{\rm{d}}}}{{\alpha_n^2}}}}\frac{{\left[ {{Y_0}\left( {\rho {\alpha_n}} \right){J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - {J_0}\left( {\rho {\alpha_n}} \right){Y_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right] + \left[ {{Y_0}\left( {\rho {\alpha_n}} \right){J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right) - {J_0}\left( {\rho {\alpha_n}} \right){Y_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)} \right]}}{{{{\left[ {\frac{{{J_1}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)}}{{{J_1}\left( {{\alpha_n}} \right)}} - \frac{{C\left( {{\alpha_n}} \right){J_0}\left( {{\rho_{\rm{c}}}{\alpha_n}} \right)}}{{{J_1}\left( {{\alpha_n}} \right)}}} \right]}^2} - \left[ {\frac{1}{{C\left( {{\alpha_n}} \right)}} + C\left( {{\alpha_n}} \right)} \right]}}} $$
(A14)

Finally, we obtain Eq. A14 in the form of Eq. 14,

$$ \theta \left( {r,t} \right) = {\theta_{\rm{s}}}(r) - \sum\limits_{n{ = 1}}^\infty {{e^{\left( { - k_{\rm{s}}^{\rm{d}} - \alpha_n^2} \right)t}}f\left( {{J_n}(r){Y_n}(r)} \right)} $$

where the function \(f{\left( {J_{n} {\left( r \right)},Y_{n} {\left( r \right)}} \right)}\) is composed of Bessel functions of the first and second kind,

$$ f\left( {{J_n}(r){Y_n}(r)} \right) = \frac{{\left[ {{Y_0}\left( {r{\alpha_n}} \right){J_1}\left( {{r_{\rm{c}}}{\alpha_n}} \right){J_0}\left( {r{\alpha_n}} \right){Y_1}\left( {{r_{\rm{c}}}{\alpha_n}} \right)} \right] + \left[ {{Y_0}\left( {r{\alpha_n}} \right){J_0}\left( {{r_{\rm{c}}}{\alpha_n}} \right) - {J_0}\left( {r{\alpha_n}} \right){Y_0}\left( {{r_{\rm{c}}}{\alpha_n}} \right)} \right]}}{{\left( {1 + \frac{{k_{\rm{s}}^{\rm{d}}}}{{\alpha_n^2}}} \right)\left[ {{{\left( {\frac{{{J_1}\left( {{r_{\rm{c}}}{\alpha_n}} \right)}}{{{J_1}\left( {{\alpha_n}} \right)}} - \frac{{C\left( {{\alpha_n}} \right){J_0}\left( {{r_{\rm{c}}}{\alpha_n}} \right)}}{{{J_1}\left( {{\alpha_n}} \right)}}} \right)}^2} - \left( {\frac{1}{{C\left( {{\alpha_n}} \right)}} + C\left( {{\alpha_n}} \right)} \right)} \right]}} $$
(A15)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Stimming, U. & Eikerling, M. Kinetic Model of Hydrogen Evolution at an Array of Au-Supported Catalyst Nanoparticles. Electrocatal 1, 60–71 (2010). https://doi.org/10.1007/s12678-010-0012-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-010-0012-3

Keywords

Navigation