Skip to main content
Log in

Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Synthesis of useful products from waste material improves the process economy and sustainability. Cellulose nanocrystals (CNCs) have unique properties like nanoscale dimensions and excellent mechanical strength. CNCs can be synthesized from Banana pseudostem, the renewable agro-waste. In a two-step process for isolation of CNCs, chemically purified cellulose (CPC) was obtained from raw fibers and CNCs were isolated from CPC by acid hydrolysis method. The effect of chemical treatments on properties of prepared CNCs was investigated. The effect of hydrolysis reaction time on the morphology of cellulose nanocrystals was also studied. It was observed that partial lignin and hemicellulose with other extractives were removed during alkali treatment. FTIR analysis indicated that peaks at 1730 cm−1 and 1250 cm−1 only were present in the spectrum of raw fibers. It indicated the removal of lignin, hemicellulose, and waxes after pre-treatment. The spectrum for treated cellulose indicated that most of the lignin and hemicelluloses were washed out in alkali treatment. Rod-like nanocrystals with average length 500 nm and diameter 80 nm were observed from FE-SEM images. Increase in crystallinity with successive treatments, from raw fibers (18.2%) to CNCs (64.2%), was observed from XRD analysis. CNCs have lower thermal stability than the raw fibers as observed from thermogravimetric analysis. The percentage crystallinity was found to be 18.2% for raw fibers. The diffractogram of raw fibers also indicated increase in % crystallinity value upon alkali treatment (52.4%) and bleaching treatment (62.6%). The hydrodynamic size (Z average) of CNC was 140.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No additional data and materials are associated with this article to support the findings of the article.

References

  1. Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1), 19–26.

    Article  Google Scholar 

  2. La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579–588.

    Article  Google Scholar 

  3. Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: A review. International Journal of Biological Macromolecules, 72, 834–847.

    Article  Google Scholar 

  4. Saxena, M., Pappu, A., Sharma, A., Haque, R., & Wankhede, S. (2011). Composite materials from natural resources: Recent trends and future potentials. In: Tesinova P (Ed). IntechOpen. Advances in Composite Materials-Analysis of Natural and Man- Made Materials, 121–162. https://doi.org/10.5772/18264

  5. Alzate Acevedo, S., Díaz Carrillo, A. J., Florez-Lopez, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26, 1–30. https://doi.org/10.3390/molecules26175282

    Article  Google Scholar 

  6. Ultra, V. U., Mendoza, D. M., & Briones, A. M. (2005). Chemical changes under aerobic composting and nutrient supplying potential of banana residue compost. Renewable Agriculture and Food Systems, 20(2), 113–125.

    Article  Google Scholar 

  7. Li, K., Fu, S., Zhan, H., Zhan, Y., & Lucia, L. (2010). Analysis of the chemical composition and morphological structure of banana pseudo-stem. BioResources, 5(2), 576–585.

    Google Scholar 

  8. Jústiz-Smith, N. G., Virgo, G. J., & Buchanan, V. E. (2008). Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials. Materials Characterization, 59(9), 1273–1278.

    Article  Google Scholar 

  9. El-Ramad, H., El-Henawy, A., Amer, M., Omara, A. E., Elsakhawy, T., Elbasiouny, H., Elbehiry, F., Elyazid, D. A., & El-Mahrouk, M. (2020). Agricultural waste and its nano-management: Mini review. Egypt Journal Soil Science, 60(4), 349–366.

    Google Scholar 

  10. Mukhopadhyay S, Fangueiro R, Arpaç Y, & Şentürk Ü (2008) Banana fibers- Variability and fracture behaviour. Journal of Engineered Fabrics & Fibers (JEFF), 3(2), 39–45.

  11. Tashiro, K., & Kobayashi, M. (1991). Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer, 32(8), 1516–1526.

    Article  Google Scholar 

  12. Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3), 459–494.

    Article  Google Scholar 

  13. Wei, H., Rodriguez, K., Renneckar, S., & Vikesland, P. J. (2014). Environmental science and engineering applications of nanocellulose-based nanocomposites. Environmental Science: Nano, 1(4), 302–316.

    Google Scholar 

  14. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self- assembly, and applications. Chemical Reviews, 110(6), 3479–3500.

    Article  Google Scholar 

  15. Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2), 1048–1054.

    Article  Google Scholar 

  16. Dong, X. M., Revol, J. F., & Gray, D. G. (1998). Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose, 5(1), 19–32.

    Article  Google Scholar 

  17. Dong, X. M., Kimura, T., Revol, J. F., & Gray, D. G. (1996). Effects of ionic strength on the isotropic− chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir, 12(8), 2076–2082.

    Article  Google Scholar 

  18. Dufresne, A. (2006). Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. Journal of Nanoscience and Nanotechnology, 6(2), 322–330.

    Article  Google Scholar 

  19. Strømme, M., Mihranyan, A., & Ek, R. (2002). What to do with all these algae? Materials Letters, 57(3), 569–572.

    Article  Google Scholar 

  20. Roman, M., & Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5(5), 1671–1677.

    Article  Google Scholar 

  21. Garcia, E. G. J. G., Mora, K. R., & Bernal, C. (2020). Cellulose nanofiber production from banana rachis. International Journal of Engineering Science and Computing, 10(2), 24683–24690.

    Google Scholar 

  22. Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., & Dufresne, A. (2017). Methods for extraction of nanocellulose from various sources. In: Kargarzadeh, H., Ahmad, I., Thomas, S., & Dufresne, A. (Eds.) Handbook of Nanocellulose and Cellulose Nanocomposites, 1st Edn. Wiley-VCH Verlag GmbH & Co. KGaA., 1–50.

  23. Owoyokun, T., Berumen, C. M. P., Luevanos, A. M., Cantu, L., & Ceniceros, A. C. L. (2021). Cellulose nanocrystals: Obtaining and sources of a promising bionanomaterial for advanced applications. Biointerface Research in Applied Chemistry, 11(4), 11797–11816. https://doi.org/10.33263/BRIAC114.1179711816

    Article  Google Scholar 

  24. Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192–201. https://doi.org/10.1016/j.foodhyd.2017.08.027

    Article  Google Scholar 

  25. Amina, K. N. M., Annamalaia, P. K., Morrowc, I. C., & Martina, D. (2015). Production of cellulose nanocrystals via a scalable mechanical method. RSC Advances, 5, 57133–57140. https://doi.org/10.1039/C5RA06862B

  26. Cecci, R. R. R., Passos, A. A., Neto, T. C. d.A, & Silva, L. A. (2020). Banana pseudostem fibres characterization and comparison with reported data on jute and sisal fibers. SN Applied Sciences, 2(20). https://doi.org/10.1007/s42452-019-1790-8

  27. Correa, A. C., Carmona, V. B., Simao, J. A., Galvani, F., Marconcini, J. M., & Mattoso, L. H. C. (2019). Cellulose nanocrystals from fibers of macauba (Acrocomia Aculeata) and gravata (Bromelia Balansae) from Brazilian pantanal. Polymers, 11(1785), 1–19. https://doi.org/10.3390/polym11111785

    Article  Google Scholar 

  28. Gupta, G. K., & Shukla, P. (2020). Lignocellulosic biomass for the synthesis of nanocellulose and its eco-friendly advanced applications. Frontiers in Chemistry, 8(601256), 1–13. https://doi.org/10.3389/fchem.2020.601256

    Article  Google Scholar 

  29. Muhamad, M., Hornsby, P., Carmichael, E., Zakaria, M., Seok, Y. B., Mohamed, S., & Sharma, S. (2019). Characterisation of cellulose nanofibres derived from chemical and mechanical treatments. MATEC Web of Conferences, 253(01002), 1–6. https://doi.org/10.1051/matecconf/201925301002

    Article  Google Scholar 

  30. Mateo, S., Peinado, S., Morillas-Gutiérrez, F., La Rubia, M. D., & Moya, A. J. (2021). Nanocellulose from agricultural wastes Products and applications A review. Processes, 9, 1594. https://doi.org/10.3390/pr9091594

    Article  Google Scholar 

  31. Das, D., Hussain, S., Ghosh, A., & Pal, A. (2018). Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chemistry and Technology, 52, 1–13.

    Google Scholar 

  32. Abe, K., Iwamoto, S., & Yano, H. (2007). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10), 3276–3278.

    Article  Google Scholar 

  33. Abe, K., & Yano, H. (2009). Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose, 16(6), 1017–1023.

    Article  Google Scholar 

  34. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high- intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804–1811.

    Article  Google Scholar 

  35. Siqueira, G., Abdillahi, H., Bras, J., & Dufresne, A. (2010). High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose, 17(2), 289–298.

    Article  Google Scholar 

  36. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83–92.

    Article  Google Scholar 

  37. Bendahou, A., Habibi, Y., Kaddami, H., & Dufresne, A. (2009). Physico-chemical characterization of palm from phoenix dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. Journal of Biobased Materials and Bioenergy, 3(1), 81–90.

    Article  Google Scholar 

  38. Fahma, F., Iwamoto, S., Hori, N., Iwata, T., & Takemura, A. (2011). Effect of pre-acid- hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose, 18(2), 443–450.

    Article  Google Scholar 

  39. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945–948.

    Article  Google Scholar 

  40. Kumar, A., Negi, Y. S., Bhardwaj, N. K., & Choudhary, V. (2012). Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 88(4), 1364–1372.

    Article  Google Scholar 

  41. Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy,. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720–725.

    Article  Google Scholar 

  42. Martínez-Sanz, M., Lopez-Rubio, A., & Lagaron, J. M. (2011). Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydrate Polymers, 85(1), 228–236.

    Article  Google Scholar 

  43. Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855–866.

    Article  Google Scholar 

  44. Sain, M., & Panthapulakkal, S. (2006). Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products, 23(1), 1–8.

    Article  Google Scholar 

  45. Ahmad, I., Mosadeghzad, Z., Daik, R., & Ramli, A. (2008). The effect of alkali treatment and filler size on the properties of sawdust/UPR composites based on recycled PET wastes. Journal of applied polymer science, 109(6), 3651–3658.

    Article  Google Scholar 

  46. Zuluaga, R., Putaux, J. L., Cruz, J., Vélez, J., Mondragon, I., & Gañán, P. (2009). Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers, 76(1), 51–59.

    Article  Google Scholar 

  47. Wada, M., Heux, L., & Sugiyama, J. (2004). Polymorphism of cellulose I family: Reinvestigation of cellulose IVI. Biomacromolecules, 5(4), 1385–1391.

    Article  Google Scholar 

  48. El-Sakhawy, M., & Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1–10.

    Article  Google Scholar 

  49. Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.

    Article  Google Scholar 

  50. Samimi, S., Maghsoudnia, N., Eftekhari, R. B., Dorkoosh, F. (2019). Lipid-based nanoparticles for drug delivery systems. In: Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., & Thomas, S. (Eds.) Characterization and Biology of Nanomaterials for Drug Delivery Micro and Nano Technologies. Elsevier, pp. 47–76. https://doi.org/10.1016/B978-0-12-814031-4.00003-9

  51. Fahmy, A., Zaid, H., & Ibrahim, M. (2019). Optimizing the electrospun parameters which affect the preparation of nanofibers. Biointerface Research in Applied Chemistry, 9, 4463–4473. https://doi.org/10.33263/briac96.463473

    Article  Google Scholar 

  52. Naresh, U., Kumar, R. J., & Naidu, K. C. B. (2019). Structural, morphological, optical, magnetic and ferroelectric properties of Ba0.2La0.8Fe2O4 nanofibers. Biointerface Research in Applied Chemistry, 9, 4243–4247. https://doi.org/10.33263/briac95.243247

    Article  Google Scholar 

  53. Lolo, J.A., Nikmatin, S., Alatas, H., Prastyo, D.D., Syafiuddin, A(2020). Fabrication of biocomposites reinforced with natural fibers and evaluation of their physiochemical properties. Biointerface Research in Applied Chemistry,10, 5803–5808. https://doi.org/10.33263/briac104.803808.

  54. Subagyo, A., Chafidz, A. (2018). Banana pseudo-stem fiber: preparation, characteristics, and applications. In: Jideani, A. I. O., & Anyasi, T. A. (Eds.) IntechOpen. Banana Nutrition - Function and Processing Kinetics. https://doi.org/10.5772/intechopen.82204

  55. Vigneswaran, C., Pavithra, V., Gayathri, V., & Mythili, K. (2015). Banana fiber: Scope and value added product development. Journal of Textile and Apparel, Technology and Management, 9, 1–7.

    Google Scholar 

  56. Bello, K., Sarojini, B. K., Narayana, B., & Rao, A. (2018). A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohydrate Polymers, 181, 605–615.

    Article  Google Scholar 

  57. Mohapatra, D., Mishra, S., & Sutar, N. (2010). Banana and its by-product utilisation: An overview. Journal of Scientific & Industrial Research, 69, 323–329.

    Google Scholar 

  58. Jordan, W., & Chester, P. (2017). Improving the properties of banana fiber reinforced polymeric composites by treating the fibers. Procedia Engineering, 200, 283–289.

    Article  Google Scholar 

  59. Ray, D., Nayak, L., Ammayappan, L., Shambhu, V., & Nag, D. (2013). Energy conservation drives for efficient extraction and utilization of banana fibre. International Journal of Emerging Technology and Advanced Engineering, 3, 296–310.

    Google Scholar 

  60. Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., & Thakur, V. K. (2015). Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. International Journal of Biological Macromolecules, 79, 449–458.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Technical Education Quality Improvement Program (TEQIP-III) for providing financial assistance to carry out this work. We also like to thank the University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon, India.

Funding

Funding received from Technical Education Quality Improvement Program (TEQIP-II), Department of Higher Education. MHRD, India, and the reference number for that funding is F.No. 16–14/2016-TS.VII.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors also read and approved the final manuscript.

Corresponding author

Correspondence to Sunil Kulkarni.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human and Animals Statement

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zope, G., Goswami, A. & Kulkarni, S. Isolation and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Banana Pseudostem. BioNanoSci. 12, 463–471 (2022). https://doi.org/10.1007/s12668-022-00960-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00960-8

Keywords

Navigation