Skip to main content

Advertisement

Log in

Anticarcinogenic Effect of Chitosan Nanoparticles Containing Syzygium aromaticum Essential Oil or Eugenol Toward Breast and Skin Cancer Cell Lines

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The development of new green drugs is crucial because of the side effects and resistance to chemotropic drugs. Essential oils with a broad range of bioactivities such as antioxidant and anticancer activities are great resources for research and investigation. In this study, ingredients of the used Syzygium aromaticum essential oil (SAEO) were identified using gas chromatography-mass spectrometry (GC-MS) analysis. The antioxidant effect of eugenol (major ingredients) was more potent than SAEO; their half-maximal inhibitory concentrations (IC50s) were observed at 109 and 204 μg mL−1. Chitosan nanoparticles containing SAEO (158 ± 4 nm) and eugenol (200 ± 13 nm) were prepared using the ionic gelation method. The potency of the nanoformulations was significantly more than their non-formulated states on both examined cell lines. IC50s of chitosan nanoparticles containing SAEO and eugenol against melanoma (A-375) cells were obtained at 73 and 79 μg mL−1; these values on breast (MDA-MB-468) cells were 177 and 51 μg mL−1. Results showed that chitosan nanoparticles containing eugenol could be considered chemo-preventative or anticancer agents in further in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Ok.

Code Availability

Not applicable.

References

  1. Miller, K. D., Fidler-Benaoudia, M., Keegan, T. H., Hipp, H. S., Jemal, A., & Siegel, R. L. (2020). Cancer statistics for adolescents and young adults, 2020 CA. Cancer Journal for Clinicians, 70(6), 443–459. https://doi.org/10.3322/caac.21637.

    Article  Google Scholar 

  2. Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer Cell, 38(2), 167–197. https://doi.org/10.1016/j.ccell.2020.06.001.

    Article  Google Scholar 

  3. Breast cancer: prevention and control. (2019) World Health Organization. https://www.who.int/cancer/detection/breastcancer/en/. Accessed September

  4. González-Jiménez, E., García, P. A., Aguilar, M. J., Padilla, C. A., & Álvarez, J. (2014). Breastfeeding and the prevention of breast cancer: A retrospective review of clinical histories. Journal of Clinical Nursing, 23(17-18), 2397–2403. https://doi.org/10.1111/jocn.12368.

    Article  Google Scholar 

  5. Comşa, Ş., Cimpean, A. M., & Raica, M. (2015). The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Research, 35(6), 3147–3154.

    Google Scholar 

  6. Jänicke, R. U. (2009). MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res. Treat., 117(1), 219–221. https://doi.org/10.1007/s10549-008-0217-9.

    Article  Google Scholar 

  7. Ossio, R., Roldan-Marin, R., Martinez-Said, H., Adams, D. J., & Robles-Espinoza, C. D. (2017). Melanoma: A global perspective. Nature Reviews Cancer, 17(7), 393–394. https://doi.org/10.1038/nrc.2017.43.

    Article  Google Scholar 

  8. Leonardi, G. C., Falzone, L., Salemi, R., Zanghì, A., Spandidos, D. A., Mccubrey, J. A., Candido, S., & Libra, M. (2018). Cutaneous melanoma: From pathogenesis to therapy. International Journal of Oncology, 52(4), 1071–1080. https://doi.org/10.3892/ijo.2018.4287.

    Article  Google Scholar 

  9. Khorsandi, K., Hosseinzadeh, R., & Chamani, E. (2020). Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: An in vitro study. Cancer Cell International, 20(1), 1–15. https://doi.org/10.1186/s12935-020-01616-x.

    Article  Google Scholar 

  10. Moreb, J., & Zucali, J. R. (1992). The therapeutic potential of interleukin-1 and tumor necrosis factor on hematopoietic stem cells. Leukemia and Lymphoma, 8(4-5), 267–275. https://doi.org/10.3109/10428199209051006.

    Article  Google Scholar 

  11. Pirmoradian, M., Budamgunta, H., Chingin, K., Zhang, B., Astorga-Wells, J., & Zubarev, R. A. (2013). Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Molecular and Cellular Proteomics, 12(11), 3330–3338. https://doi.org/10.1074/mcp.O113.028787.

    Article  Google Scholar 

  12. Maksimović-Ivanić, D., Bulatović, M., Edeler, D., Bensing, C., Golić, I., Korać, A., Kaluđerović, G. N., & Mijatović, S. (2019). The interaction between sba-15 derivative loaded with Ph 3 Sn (Ch 2) 6 Oh and human melanoma A375 cell line: Uptake and stem phenotype loss. Journal of Biological Inorganic Chemistry, 24(2), 223–234.

    Article  Google Scholar 

  13. Olaku, O., & White, J. D. (2011). Herbal therapy use by cancer patients: A literature review on case reports. European Journal of Cancer, 47(4), 508–514. https://doi.org/10.1016/j.ejca.2010.11.018.

    Article  Google Scholar 

  14. Shen, J., Andersen, R., Albert, P. S., Wenger, N., Glaspy, J., Cole, M., & Shekelle, P. (2002). Use of complementary/alternative therapies by women with advanced-stage breast cancer. BMC Complement. Altern. Med, 2(1), 8. https://doi.org/10.1186/1472-6882-2-8.

    Article  Google Scholar 

  15. Blowman, K., Magalhães, M., Lemos, M., Cabral, C., & Pires, I. (2018). Anticancer properties of essential oils and other natural products. Evidence-based Complementary and Alternative Medicine, 2018, 3149362. https://doi.org/10.1155/2018/3149362.

    Article  Google Scholar 

  16. Osanloo, M., Sedaghat, M. M., Esmaeili, F., & Amani, A. (2018). Larvicidal activity of essential oil of Syzygium aromaticum (clove) in comparison with its major constituent, eugenol, against Anopheles stephensi. Journal of Arthropod-Borne Diseases, 12(4), 361–369. https://doi.org/10.18502/jad.v12i4.354.

    Article  Google Scholar 

  17. Gülçin, İ., Elmastaş, M., & Aboul-Enein, H. Y. (2012). Antioxidant activity of clove oil–A powerful antioxidant source. Arabian Journal of Chemistry, 5(4), 489–499. https://doi.org/10.1016/j.arabjc.2010.09.016.

    Article  Google Scholar 

  18. Nirmala, M. J., Durai, L., Gopakumar, V., & Nagarajan, R. (2019). Anticancer and antibacterial effects of a clove bud essential oil-based nanoscale emulsion system. International Journal of Nanomedicine, 14, 6439. https://doi.org/10.2147/IJN.S211047.

    Article  Google Scholar 

  19. Qian, W., Sun, Z., Wang, T., Yang, M., Liu, M., Zhang, J., & Li, Y. (2020). Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microbial Pathogenesis, 139, 103924. https://doi.org/10.1016/j.micpath.2019.103924.

    Article  Google Scholar 

  20. Li, Z., Veeraraghavan, V. P., Mohan, S. K., Bolla, S. R., Lakshmanan, H., Kumaran, S., Aruni, W., Aladresi, A. A. M., Shair, O. H. M., Alharbi, S. A., & Chinnathambi, A. (2020). Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway. Journal of Photochemistry and Photobiology B: Biology, 203, 111773. https://doi.org/10.1016/j.jphotobiol.2019.111773.

    Article  Google Scholar 

  21. Jaganathan, S. K., Mazumdar, A., Mondhe, D., & Mandal, M. (2011). Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biology International, 35(6), 607–615. https://doi.org/10.1042/cbi20100118.

    Article  Google Scholar 

  22. Slameňová, D., Horváthová, E., Wsólová, L., Šramková, M., & Navarová, J. (2009). Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 677(1-2), 46–52. https://doi.org/10.1016/j.mrgentox.2009.05.016.

    Article  Google Scholar 

  23. Adir, O., Poley, M., Chen, G., Froim, S., Krinsky, N., Shklover, J., Shainsky-Roitman, J., Lammers, T., & Schroeder, A. (2020). Integrating artificial intelligence and nanotechnology for precision cancer medicine. Advanced Materials, 32(13), 1901989. https://doi.org/10.1002/adma.201901989.

    Article  Google Scholar 

  24. Coimbra, M., Isacchi, B., van Bloois, L., Torano, J. S., Ket, A., Wu, X., Broere, F., Metselaar, J. M., Rijcken, C. J., & Storm, G. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. International Journal of Pharmaceutics, 416(2), 433–442. https://doi.org/10.1016/j.ijpharm.2011.01.056.

    Article  Google Scholar 

  25. Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, 21(2), 487. https://doi.org/10.3390/ijms21020487.

    Article  Google Scholar 

  26. Zhang, H., Huang, X., Sun, Y., Xing, J., Yamamoto, A., & Gao, Y. (2016). Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin. Drug Delivery, 23(7), 2419–2427. https://doi.org/10.3109/10717544.2014.1002946.

    Article  Google Scholar 

  27. Sohail, R., & Abbas, S. R. (2020). Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. International Journal of Biological Macromolecules, 153, 36–45. https://doi.org/10.1016/j.ijbiomac.2020.02.191.

    Article  Google Scholar 

  28. Mazzotta, E., De Benedittis, S., Qualtieri, A., & Muzzalupo, R. (2020). Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics, 12(1), 26. https://doi.org/10.3390/pharmaceutics12010026.

    Article  Google Scholar 

  29. Moemenbellah-Fard, M. D., Abdollahi, A., Ghanbariasad, A., & Osanloo, M. (2020). Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient, eugenol. Flavour and Fragrance Journal, 35(5), 534–540. https://doi.org/10.1002/ffj.3595.

    Article  Google Scholar 

  30. Zarenezhad, E., Abdollahi, A., Esmaeili, F., Satvati, S., & Osanloo, M. (2020). A fast-degradable nano-dressing with potent antibacterial effect. BioNanoScience, 10, 983–990. https://doi.org/10.1007/s12668-020-00790-6.

    Article  Google Scholar 

  31. Osanloo, M., Sedaghat, M., Sereshti, H., Rahmanian, M., Saeedi Landi, F., & Amani, A. (2019). Chitosan nanocapsules of tarragon essential oil with low cytotoxicity and long-lasting activity as a green nano-larvicide. Journal of Nanostructure, 9(4), 723–735. https://doi.org/10.22052/JNS.2019.04.014.

    Article  Google Scholar 

  32. Abedinpour, N., Ghanbariasad, A., Taghinezhad, A., & Osanloo, M. (2021). Preparation of nanoemulsions of Mentha piperita essential oil and investigation of their cytotoxic effect on human breast cancer lines. BioNanoScience. https://doi.org/10.1007/s12668-021-00827-4.

  33. Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer oxidative stress-Its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Research, 3(5), 323–327. https://doi.org/10.1186/bcr315.

    Article  Google Scholar 

  34. Dakah, A., Zaid, S., Suleiman, M., Abbas, S., & Wink, M. (2014). In vitro propagation of the medicinal plant Ziziphora tenuior L. and evaluation of its antioxidant activity. Saudi Journal Biological Science, 21(4), 317–323. https://doi.org/10.1016/j.sjbs.2013.12.002.

    Article  Google Scholar 

  35. Yoo, K. M., Lee, C. H., Lee, H., Moon, B., & Lee, C. Y. (2008). Relative antioxidant and cytoprotective activities of common herbs. Food Chemistry, 106(3), 929–936. https://doi.org/10.1016/j.foodchem.2007.07.006.

    Article  Google Scholar 

  36. Loizzo, M. R., Ben Jemia, M., Senatore, F., Bruno, M., Menichini, F., & Tundis, R. (2013). Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food and Chemical Toxicology, 59, 586–594. https://doi.org/10.1016/j.fct.2013.06.040.

    Article  Google Scholar 

  37. Rasoanaivo, P., Fortune Randriana, R., Maggi, F., Nicoletti, M., Quassinti, L., Bramucci, M., Lupidi, G., Petrelli, D., Vitali, L. A., Papa, F., & Vittori, S. (2013). Chemical composition and biological activities of the essential oil of Athanasia brownii Hochr. (Asteraceae) endemic to Madagascar. Chemistry and Biodiversity, 10(10), 1876–1886. https://doi.org/10.1002/cbdv.201300147.

    Article  Google Scholar 

  38. Ali, N. A., Wursterb, M., Denkert, A., Arnold, N., Fadail, I., Al-Didamony, G., Lindequist, U., Wessjohann, L., & Setzer, W. N. (2012). Chemical composition, antimicrobial, antioxidant and cytotoxic activity of essential oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen. Natural Production Communications, 7(8), 1099–1102. https://doi.org/10.1177/1934578x1200700834.

    Article  Google Scholar 

  39. Leal, P. F., Braga, M. E., Sato, D. N., Carvalho, J. E., Marques, M. O., & Meireles, M. A. A. (2003). Functional properties of spice extracts obtained via supercritical fluid extraction. Journal of Agricultural and Food Chemistry, 51(9), 2520–2525. https://doi.org/10.1021/jf0260693.

    Article  Google Scholar 

  40. Osanloo, M., Arish, J., & Sereshti, H. (2020). Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: A systematic review. Polymer Bulletin, 77(11), 6085–6104. https://doi.org/10.1007/s00289-019-03042-0.

    Article  Google Scholar 

  41. Esmaili, F., Sanei-Dehkordi, A., Amoozegar, F., & Osanloo, M. (2021). A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Research Applied Chemistry, 11(5), 12516–12529. https://doi.org/10.33263/BRIAC115.1251612529.

    Article  Google Scholar 

  42. Cao, G. (2004). Nanostructures & nanomaterials: Synthesis, properties & applications. Imperial college press.

  43. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.

    Article  Google Scholar 

  44. El-Say, K. M., & El-Sawy, H. S. (2017). Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics, 528(1-2), 675–691. https://doi.org/10.1016/j.ijpharm.2017.06.052.

    Article  Google Scholar 

  45. Wieczyńska, J., & Cavoski, I. (2018). Antimicrobial, antioxidant and sensory features of eugenol, carvacrol and trans-anethole in active packaging for organic ready-to-eat iceberg lettuce. Food Chemistry, 259, 251–260. https://doi.org/10.1016/j.foodchem.2018.03.137.

    Article  Google Scholar 

  46. Fathy, M., Fawzy, M. A., Hintzsche, H., Nikaido, T., Dandekar, T., & Othman, E. M. (2019). Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation. Molecules, 24(21), 3979. https://doi.org/10.3390/molecules24213979.

    Article  Google Scholar 

Download references

Funding

This study was supported by Fasa University of Medical Sciences, grant no. 97430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Osanloo.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

This research did not involve human and animals study.

Informed Consent

Not applicable.

Consent for Publication

Ok.

Ethics approval

This study has been ethically approved, IR.FUMS.REC.1398.139.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, A., Khaleghi, A.A., Alipanah, H. et al. Anticarcinogenic Effect of Chitosan Nanoparticles Containing Syzygium aromaticum Essential Oil or Eugenol Toward Breast and Skin Cancer Cell Lines. BioNanoSci. 11, 678–686 (2021). https://doi.org/10.1007/s12668-021-00880-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00880-z

Keywords

Navigation