Skip to main content
Log in

Bioassisted Synthesis of Gold Nanoparticles from Saccharomonospora glauca: Toxicity and Biocompatibility Study

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Bionanosynthesis is an important aspect in the rapidly growing field of nanotechnology that provides a good functional material of biological interest. In the present study, bioassisted synthesis of gold nanoparticles (GNPs) was carried out using Saccharomonospora glauca, rare actinomycetes isolated from soil and were tested for haemocompatibility and cytotoxicity against NIH3T3, HT-29, and Hep 2 cells. Bioreduction was monitored by using UV-visible spectroscopy and characterised by FTIR, XRD, SEM, DLS and zeta potential. XRD confirmed the crystalline nature of the synthesised GNPs. The average particle size obtained by SEM and DLS was found to be 30 nm with spherical in shape. The synthesised GNPs showed good cytotoxic activity against cancer cell lines HT-29 and Hep 2 with an IC-50 value of 49.8 μg/ml and 96.8 μg/ml respectively and least toxicity for normal cell lines NIH3T3. This was further confirmed by staining the cells with AO and PI dual staining for apoptosis detection. The synthesised GNPs showed excellent biocompatibility for human blood without haemolysis. The work reports for the first time the synthesis of simple and eco-friendly GNPs from Saccharomonospora glauca showing excellent biocompatibility and good toxicity for cancer cells with mild toxicity for normal cell lines that can be implemented for biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. https://doi.org/10.1016/j.cis.2010.02.001.

  2. Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., Dalila, L. M., Sarma, S. J., & Brar, S. K. (2017). Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnology for Environmental Engineering. https://doi.org/10.1007/s41204-017-0029-4.

  3. Kaliaraj, GS, Subramaniyan, B, Manivasagan, P et al (2017) Green synthesis of metal nanoparticles using seaweed polysaccharides in seaweed polysaccharide. https://doi.org/10.1016/B978-0-12-809816-5.00007-4

  4. Srivastava, N., & Mukhopadhyay, M. (2013). Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technology. https://doi.org/10.1016/j.powtec.2013.03.050.

  5. Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine Nanotechnology. https://doi.org/10.4172/2157-7439.1000233.

  6. Gomathy, M, Sabarinathan KG (2010) Microbial mechanisms of heavy metal tolerance-a review. Agricultural Reviews (31):133–138.

  7. Rajeshkumar, S. (2016). Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. Journal, Genetic Engineering & Biotechnology, 14, 195–202. https://doi.org/10.1016/j.jgeb.2016.05.007.

    Article  Google Scholar 

  8. Tikariha S, Singh S, Banerjee S, Vidyarthi AS (2012). Biosynthesis of gold nanoparticles, scope and application: A review. IJPSR. 3:1603-15. 10.13040.

  9. Asahi T, Uwada T, Masuhara H (2006). Single particle spectroscopic study on surface plasmon resonance probing local environmental conditions. In Handai Nanophotonics.2:219-228. https://doi.org/10.1016/S1574-0641(06)80017-3

  10. Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles:review. Talanta, 184, 537–556. https://doi.org/10.1016/j.talanta.2018.02.088.

    Article  Google Scholar 

  11. Manivasagan, P., Venkatesan, J., Sivakumar, K., et al. (2016). Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. Critical Reviews in Microbiology, 42, 209–221. https://doi.org/10.3109/1040841X.2014.917069.

    Article  Google Scholar 

  12. Składanowski, M., Wypij, M., Laskowski, D., et al. (2017). Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 59–79. https://doi.org/10.1007/s10876-016-1043-6.

    Article  Google Scholar 

  13. Manivasagan, P., Venkatesan, J., Kang, K. H., et al. (2015). Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. International Journal of Biological Macromolecules, 72, 71–78. https://doi.org/10.1016/j.ijbiomac.2014.07.045.

    Article  Google Scholar 

  14. Könen-Adıgüzel, S., Adıgüzel, A. O., Ay, H., et al. (2018). Genotoxic, cytotoxic, antimicrobial and antioxidant properties of gold nanoparticles synthesized by Nocardia sp. GTS18 using response surface methodology. Materials Research Express, 5, 115402. https://doi.org/10.1088/2053-1591/aadcc4.

    Article  Google Scholar 

  15. Ahmad, A., Senapati, S., Khan, M. I., et al. (2003). Extracellular biosynthesis of monodisperse gold nanoparticles by a novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir., 19, 3550–3553. https://doi.org/10.1021/la026772l.

    Article  Google Scholar 

  16. Verma, V. C., Anand, S., Christian, C., et al. (2013). Biogenic gold nanotriangles from Saccharomonospora sp., endophytic actinomycetes of Azadirachta indica A. Juss. International Nano Letters, 3, 21–28. https://doi.org/10.1186/2228-5326-3-21.

    Article  Google Scholar 

  17. Kuster, E., & Williams, S. T. (1964). Selection of media for isolation of Streptomycetes. Nature, 202, –928. https://doi.org/10.1038/202928a0.

  18. Pospiech, A., & Neumann, B. (1995). A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends in Genetics, 11, 217–218. https://doi.org/10.1016/S0168-9525(00)89052-6.

    Article  Google Scholar 

  19. Pourali, P., Badiee, S. H., Manafi, S., Noorani, T., Rezaei, A., & Yahyaei, B. (2017). Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electronic Journal of Biotechnology. https://doi.org/10.1016/j.ejbt.2017.07.005.

  20. Ranjitha, V. R., & Rai, R. V. (2018). Extracellular synthesis of selenium nanoparticles from an Actinomycetes Streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharmaceutical Nanotechnology, 6, 61–68. https://doi.org/10.2174/2211738505666171113141010.

    Article  Google Scholar 

  21. Kim, I. W., Lee, J. H., Kwon, Y. N., et al. (2013). Anticancer activity of a synthetic peptide derived from harmoniasin, an antibacterial peptide from the ladybug Harmonia axyridis. International Journal of Oncology, 43, 622–628. https://doi.org/10.3892/ijo.2013.1973.

    Article  Google Scholar 

  22. Qu, N., Lee, R. J., Sun, Y., et al. (2016). Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. International Journal of Nanomedicine, 11, 3451. https://doi.org/10.2147/IJN.S105420.

    Article  Google Scholar 

  23. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir., 12, 788–800. https://doi.org/10.1021/la9502711.

    Article  Google Scholar 

  24. Gopal, J. V., Thenmozhi, M., Kannabiran, K., et al. (2013). Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Materials Letters, 93, 360–362. https://doi.org/10.1016/j.matlet.2012.11.125.

    Article  Google Scholar 

  25. Abdel-Raouf, N., Al-Enazi, N. M., Ibraheem, I. B. M., et al. (2018). Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2018.01.007.

  26. Fang, L., Yu, J., Jiang, Z., et al. Preparation of a β-cyclodextrin-based open-tubular capillary electrochromatography column and application for enantio separations of ten basic drugs. PLoS One. https://doi.org/10.1371/journal.pone.0146292.

  27. Rahim, M., Iram, S., Syed, A., et al. (2017). Nutratherapeutics approach against cancer: Tomato-mediated synthesised gold nanoparticles. IET Nanobiotechnology, 12, 1–5. https://doi.org/10.1049/iet-nbt.2017.0068.

    Article  Google Scholar 

  28. Maniraj, A., Kannan, M., Rajarathinam, K., et al. (2017). Optimization and characterization of green synthesized silver nanoparticles and its inhibitory activity against biofilm forming bacterial pathogens. JOAASR, 1, 97–106.

    Google Scholar 

  29. Khalil, M. M., Ismail, E. H., & El-Magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arabian Journal of Chemistry, 5, 431–437. https://doi.org/10.1016/j.arabjc.2010.11.011.

    Article  Google Scholar 

  30. Pérez, Z. E. J., Mathiyalagan, R., Markus, J., et al. (2017). Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. International Journal of Nanomedicine, 12, 709–723. https://doi.org/10.2147/IJN.S118373.

    Article  Google Scholar 

  31. Ranjitha, V. R., & Rai, R. V. (2017). Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech, 7, 299. https://doi.org/10.1007/s13205-017-0930-3.

    Article  Google Scholar 

  32. Bindhu, M. R., & Umadevi, M. (2014). Antibacterial activities of green synthesised gold nanoparticles. Materials Letters, 120, 122–125. https://doi.org/10.1016/j.matlet.2014.01.108.

    Article  Google Scholar 

  33. Roy, S., Das, T. K., Maiti, G. P., et al. (2016). Microbial biosynthesis of nontoxic gold nanoparticles. Materials Science & Engineering, B: Advanced Functional Solid-State Materials, 203, 41–51. https://doi.org/10.1016/j.mseb.2015.10.008.

    Article  Google Scholar 

  34. El-Sheekh, M. M., & El-Kassas, H. Y. (2016). Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. Journal, Genetic Engineering & Biotechnology, 14, 299–310. https://doi.org/10.1016/j.jgeb.2016.09.008.

    Article  Google Scholar 

  35. Fratoddi, I., Venditti, I., Cametti, C., et al. (2015). How toxic are gold nanoparticles? The state-of-the-art. Nano Research, 8, 1771–1799. https://doi.org/10.1007/s12274-014-0697-3.

    Article  Google Scholar 

  36. Parveen, A., & Rao, S. (2015). Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. Journal of Cluster Science, 26, 775–788. https://doi.org/10.1007/s10876-014-0744-y.

    Article  Google Scholar 

  37. El-Kassas, H. Y., & El-Sheekh, M. M. (2014). Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention, 15, 4311–4317. https://doi.org/10.7314/APJCP.2014.15.10.4311.

    Article  Google Scholar 

  38. Barabadi, H., Ovais, M., Shinwari, Z. K., & Saravanan, M. (2017). Anti-cancer green bionanomaterials: Present status and future prospects. Green Chemistry Letters and Reviews. https://doi.org/10.1080/17518253.2017.1385856.

  39. Jafari, M., Rokhbakhsh-Zamin, F., Shakibaie, M., et al. (2018). Cytotoxi and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatalysis and Agricultural Biotechnology, 15, 245–253. https://doi.org/10.1016/j.bcab.2018.06.014.

    Article  Google Scholar 

  40. Kulandaivelu, B., & Gothandam, K. M. (2016). Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Brazilian Archives of Biology and Technology. https://doi.org/10.1590/1678-4324-2016150529.

  41. Hajiaghaalipour, F., Kanthimathi, M. S., Sanusi, J., et al. (2015). White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage. Food Chemistry, 169, 401–410. https://doi.org/10.1016/j.foodchem.2014.07.005.

    Article  Google Scholar 

  42. Ajdari, Z., Rahman, H., Shameli, K., et al. (2016). Novel gold nanoparticles reduced by Sargassumglaucescens: Preparation, characterization and anticancer activity. Molecules., 21, 123. https://doi.org/10.3390/molecules21030123.

    Article  Google Scholar 

  43. Shi, X., Wang, W., et al. (2011). Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: Synthesis, characterization, and in vitro toxicity assay. International Journal of Nanomedicine, 6, 3449–3459. https://doi.org/10.2147/ijn.s27166.

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support provided by UGC, India, under the programme of Centre with Potential for Excellence in Particular Area (CPEPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ravishankar Rai.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjitha, V.R., Ravishankar Rai, V. Bioassisted Synthesis of Gold Nanoparticles from Saccharomonospora glauca: Toxicity and Biocompatibility Study. BioNanoSci. 11, 371–379 (2021). https://doi.org/10.1007/s12668-021-00830-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00830-9

Keywords

Navigation