Skip to main content

Advertisement

Log in

Poloxamer-Based In Situ Nasal Gel of Naratriptan Hydrochloride Deformable Vesicles for Brain Targeting

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Migraine is the chronic neurological disorder identified by recurrent moderate to severe headache. Research was highlighted to formulate target drug delivery to treat migraine via the olfactory lobe through the intranasal route using ethosomal thermoreversible gel. Ethosomes were prepared by thin film hydration method using 32 factorial design. The prepared ethosomes were evaluated for percent drug loading, vesicle size, zeta potential, and polydispersity index, whereas nanoethosomal in situ gels were assessed for their pH, viscosity, mucoadhesive strength, and in vitro drug release. Ex vivo drug permeation was evaluated using nasal mucosa of sheep. The data produced from the experimental design indicated NE6 (soya lecithin 3%:ethanol 50%) as the optimized ethosome formulation, whereas NG3 (carbol 934-0.3%) and NG6 (PVP K30-0.3%) were recorded as the optimized in situ gel formulations. In vitro and ex vivo drug release demonstrated almost 100% release after 24 h for optimized formulations. In conclusion, drug-loaded in situ mucoadhesive gels could release the drug for longer duration of time which can improve the bioavailability providing new dimension to the treatment of migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NH:

Naratriptan hydrochloride

NE6:

Optimized batch of ethosomes

NG3:

Carbol 934-0.3%

NG6:

PVP K30-0.3%

PVP K30:

Polyvinylpyrrolidone K30

5-HT:

5-Hydroxytryptamine

PBS:

Phosphate-buffered saline

UV-vis:

Ultraviolet-visible spectroscopy

References

  1. Abashzadeh, S., Dinarvand, R., Sharifzadeh, M., et al. (2011). Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate. European Journal of Pharmaceutical Sciences, 44, 514–521.

    Google Scholar 

  2. Agrawal, G., Wakte, P., & Shelke, S. (2017a). Formulation optimization of human insulin loaded microspheres for controlled oral delivery using response surface methodology. Endocrine, Metabolic & Immune Disorders Drug Targets, 17(2), 149–165.

    Google Scholar 

  3. Agrawal, G. R., Wakte, P., & Shelke, S. (2017b). Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier. ProgBiomat, 6(3), 125–136.

    Google Scholar 

  4. Andrews, G. P., Laverty, T. P., & Jones, D. S. (2009). Mucoadhesive polymeric platforms for controlled drug delivery. Journal of Pharmaceutics and Biopharmaceutics, 71, 505–518.

    Google Scholar 

  5. Bhalerao, A. V., Lonkar, S. L., Deshkar, S. S., et al. (2009). Nasal mucoadhesive in situ gel of ondansetron hydrochloride. Indian Journal of Pharmaceutical Sciences, 71, 711.

    Google Scholar 

  6. Bhandwalkar, M. J., & Avachat, A. M. (2013). Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech, 14, 101–110.

    Google Scholar 

  7. Bhowmik, M., Kumari, P., Sarkar, G., et al. (2013). Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Journal of Pharmaceutics and Biopharmaceutics, 62, 117–123.

    Google Scholar 

  8. Bodade, S. S., Shaikh, K. S., Kamble, M. S., et al. (2013). A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Delivery, 20, 40–46.

    Google Scholar 

  9. Chandler, D. (2005). Interfaces and the driving force of hydrophobic assembly. Nature, 37, 640–647.

    Google Scholar 

  10. Chen, B., Shaari, J., Claire, S. E., et al. (2006). Altered sinonasal ciliary dynamics in chronic rhinosinusitis. American Journal of Rhinology, 20, 325–329.

    Google Scholar 

  11. Choi, H. G., Jung, J. H., Ryu, J. M., et al. (1998). Development of in situ-gelling and mucoadhesive acetaminophen liquid suppository. International Journal of Pharmaceutics, 165(1), 33–44.

    Google Scholar 

  12. Costantino, H. R., Illum, L., Brandt, G., et al. (2007). Intranasal delivery: physicochemical and therapeutic aspects. International Journal of Pharmaceutics, 337, 1–24.

    Google Scholar 

  13. Dumortier, G., Grossiord, J. L., Agnely, F., et al. (2006). A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharmaceutical Research, 23, 2709–2728.

    Google Scholar 

  14. El-Samaligy, M. S., Afifi, N. N., & Mahmoud, E. A. (2006). Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. International Journal of Pharmaceutics, 308, 140–148.

    Google Scholar 

  15. Elsayed, M. M., Abdallah, O. Y., Naggar, V. F., et al. (2007). Lipid vesicles for skin delivery of drugs: reviewing three decades of research. International Journal of Pharmaceutics, 332, 1–16.

    Google Scholar 

  16. Farokhzad, O. C., & Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3, 16–20.

    Google Scholar 

  17. Ganguly, S., & Dash, A. K. (2004). A novel in situ gel for sustained drug delivery and targeting. International Journal of Pharmaceutics, 276, 83–92.

    Google Scholar 

  18. Geraud, G., Charlotte, K., & Jean, M. S. (2003). No migraine headache recurrence: relationship to clinical, pharmacological, and pharmacokinetic properties of triptans. Journal of Head and Face Pain, 43, 376–388 http://onlinelibrary.wiley.com/doi/10.1046/j.1526-4610.2003.03073.x/full.

    Google Scholar 

  19. Havanka, H., Dahlöf, C., Pop, P. H., et al. (2000). Efficacy of naratriptan tablets in the acute treatment of migraine: a dose-ranging study. Clinical Therapeutics, 31(22), 970–980.

    Google Scholar 

  20. Huang, Y. B., Tsai, M. J., Wu, P. C., et al. (2011). Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. Journal of Drug Targeting, 19, 709–718.

    Google Scholar 

  21. Jain, S. K., Chourasia, M. K., Jain, A. K., et al. (2004). Development and characterization of mucoadhesive microspheres bearing salbutamol for nasal delivery. Drug Delivery, 11(2), 113–122.

    Google Scholar 

  22. Joki, S., Toskala, E., Saano, V., et al. (1998). Correlation between ciliary beat frequency and the structure of ciliated epithelia in pathologic human nasal mucosa. Laryngoscope, 108, 426–430.

    Google Scholar 

  23. Karasulu, E., Yavaşoğlu, A., Evrenşanal, Z., et al. (2008). Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Delivery, 15, 219–225.

    Google Scholar 

  24. Keck, T., Leiacker, R., Riechelmann, H., et al. (2000). Temperature profile in the nasal cavity. Laryngoscope, 110, 651–654.

    Google Scholar 

  25. Li, W., Gai, M., Rutkowski, S., et al. (2018). An automated device for layer-by-layer coating of dispersed superparamagnetic nanoparticle templates. Colloid Journal, 80(6), 648–659. https://doi.org/10.1134/S1061933X18060078.

    Article  Google Scholar 

  26. Lopez-Pinto, J. M., Gonzalez-Rodriguez, M. L., & Rabasco, A. M. (2005). Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. International Journal of Pharmaceutics, 298, 1–2.

    Google Scholar 

  27. Maheshwari, R. G., Tekade, R. K., Sharma, P. A., et al. (2012a). Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharmaceutical Journal, 20, 161–170.

    Google Scholar 

  28. Maheshwari, R. G., Tekade, R. K., Sharma, P. A., et al. (2012b). Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment. Saudi Pharmaceutical, J20(2), 161–170.

    Google Scholar 

  29. Majithiya, R. J., Ghosh, P. K., Umrethia, M. L., et al. (2006a). Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech, 2006(7), E80–E86.

    Google Scholar 

  30. Majithiya, R. J., Ghosh, P. K., Umrethia, M. L., et al. (2006b). Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech, 7, 67.

    Google Scholar 

  31. Masserini M. Nanoparticles for brain drug delivery (2013). ISRN Biochemistry 21;2013.

  32. Mathew NT (1999) Naratriptan: a review. Expert Opin. Investig Drugs 8:687–695. doi:https://doi.org/10.1517/13543784.8.5.687.

  33. Megrab, N. A., Williams, A. C., & Barry, B. W. (1995). Oestradiol permeation through human skin and silastic membrane: effects of propylene glycol and supersaturation. Journal of Controlled Release, 36, 277–294.

    Google Scholar 

  34. Omar, S. M., AbdAlla, F. I., & Abdelgawad, N. M. (2018). Preparation and optimization of fast-disintegrating tablet containing naratriptan hydrochloride using D-optimal mixture design. AAPS PharmSciTech, 19(6), 2472–2487.

    Google Scholar 

  35. Pathan, I. B., Jaware, B. P., Shelke, S., et al. (2018). Curcumin loaded ethosomes for transdermal application: formulation, optimization, in-vitro and in-vivo study. Journal of Drug Delivery Science and Technology, 44, 49–57.

    Google Scholar 

  36. Pisal, S. S., Paradkar, A. R., Mahadik, K. R., et al. (2004). Pluronic gels for nasal delivery of vitamin B12. Part I: preformulation study. International Journal of Pharmaceutics, 270, 37–45.

    Google Scholar 

  37. Proctor, D. F., Andersen, I., & Lundqvist, G. R. (1977). Human nasal mucosal function at controlled temperatures. Respiration Physiology, 30, 109–124.

    Google Scholar 

  38. Pund, S., Rasve, G., & Borade, G. (2013). Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. European Journal of Pharmaceutical Sciences, 48, 195–201.

    Google Scholar 

  39. Rutkowski, S., Si, T., Gai, M., et al. (2018). Hydrodynamic electrospray ionization jetting of calcium alginate particles: effect of spray-mode, spraying distance and concentration. RSC Advances, 8, 24243–24249. https://doi.org/10.1039/C8RA03490G.

    Article  Google Scholar 

  40. Rutkowski, S., Mu, L., Si, T., et al. (2019). Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Colloid Surface, B175, 44–55.

    Google Scholar 

  41. Sahin-Yilmaz, A., & Naclerio, R. M. (2011). Anatomy and physiology of the upper airway. Proceedings of the American Thoracic Society, 8(1), 31–39.

    Google Scholar 

  42. Salunke, S. R., & Patil, S. B. (2009). Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. International Journal of Biological Macromolecules, 87, 41–47.

    Google Scholar 

  43. Sattar, M., Hadgraft, J., & Lane, M. E. (2015). Preparation, characterization and buccal permeation of naratriptan. International Journal of Pharmaceutics, 493(1–2), 146–151.

    Google Scholar 

  44. Scherlund, M., Welin-Berger, K., Brodin, A., et al. (2001). Local anaesthetic block copolymer system undergoing phase transition on dilution with water. European Journal of Pharmaceutical Sciences, 14, 53–61.

    Google Scholar 

  45. Shelke, S., Shahi, S., Jalalpure, S., et al. (2015a). Formulation and evaluation of thermoreversible mucoadhesive in-situ gel for intranasal delivery of naratriptan hydrochloride. Journal of Drug Delivery Science and Technology, 29, 238–244.

    Google Scholar 

  46. Shelke, S., Shahi, S., Kale, S., et al. (2015b). Development and validation of UV spectrophotometric method of naratriptan hydrochloride in bulk and pharmaceutical formulation. Asian Journal of Biomedical and Pharmaceutical Sciences, 5, 36.

    Google Scholar 

  47. Shelke, S., Shahi, S., Jadhav, K., et al. (2016a). Thermoreversiblenanoethosomal gel for the intranasal delivery of eletriptanhydrobromide. Journal of Materials Science. Materials in Medicine, 27, 1–13.

    Google Scholar 

  48. Shelke, S., Shahi, S., Jalalpure, S., et al. (2016b). Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. Journal of Liposome Research, 26, 313–323.

    Google Scholar 

  49. Soane, R. J., Hinchcliffe, M., Davis, S. S., et al. (2001). Clearance characteristics of chitosan based formulations in the sheep nasal cavity. International Journal of Pharmaceutics, 217, 183–191.

    Google Scholar 

  50. Souto, E. B., Wissing, S. A., Barbosa, C. M., et al. (2004). Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. International Journal of Pharmaceutics, 278, 71–77.

    Google Scholar 

  51. Talegaonkar, S., Mishra, P., Khar, R., et al. (2006). Vesicular systems: an overview. Indian Journal of Pharmaceutical Sciences, 68, 2.

    Google Scholar 

  52. Tfelt-Hansen, P., De Vries, P., & Saxena, P. R. (2000). Triptans in migraine. Drugs, 60, 1259–1287.

    Google Scholar 

  53. Vlachou, M. D., Rekkas, D. M., Dallas, P. P., et al. (1992). Development and in vitro evaluation of griseofulvin gels using Franz diffusion cells. International Journal of Pharmaceutics, 82, 47–52.

    Google Scholar 

  54. Wang, X., Chi, N., & Tang, X. (2008). Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. European Journal of Pharmaceutics and Biopharmaceutics, 70, 735–740.

    Google Scholar 

  55. Wu, Y., Frueh, J., Si, T., et al. (2015). Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules. Physical Chemistry, 17, 3281–3286. https://doi.org/10.1039/C4CP05231E.

    Article  Google Scholar 

  56. Zagami, A. S., & Bahra, A. (2006). Symptomatology of migraines without aura. The Headaches (3rd ed.pp. 399–405). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  57. Zhaowu, Z., Xiaoli, W., Yangde, Z., et al. (2009). Preparation of matrineethosome, its percutaneous permeation in vitro and anti-inflammatory activity in vivo in rats. Journal of Liposome Research, 19, 155–162.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Management, Srinath College of Pharmacy, Aurangabad (M.S.), India for providing required facilities to carry out the research work. We would also like to thank Orchid Chemicals and Pharmaceuticals Ltd., Chennai, India for providing free sample of NH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Shelke.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

No any animal and human subjects were used in the study.

Informed Consent

No any human experimentations were conducted. No consent to declare.

Funding Statement

No funding to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelke, S., Pathan, I., Shinde, G. et al. Poloxamer-Based In Situ Nasal Gel of Naratriptan Hydrochloride Deformable Vesicles for Brain Targeting. BioNanoSci. 10, 633–648 (2020). https://doi.org/10.1007/s12668-020-00767-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00767-5

Keywords

Navigation