Skip to main content

Advertisement

Log in

Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Mosquito-borne diseases cause life-threatening challenges to public health, and their prevention is the key task of several parasitological techniques. In the past, conventional chemical and biological mosquitocides were highly utilized to regulate the mosquito population. However, these mosquitocidal agents possess drawbacks such as toxicity toward humans and resulted in mosquitoes with high resistance to mosquitocides. The technological improvements in the field of nanoparticles are widely used to overcome the drawback of conventional mosquitocides. Nanoparticles, especially nanosized metal oxides, seem to possess unique properties that can help in the formulation of the enhanced mosquitocidal agent. In this review article, magnesium oxide (MgO) nanoparticles have been proposed as an enhanced mosquitocidal agent and as an alternative to conventional mosquitocides. Additionally, a group of metal oxide nanoparticles is listed as mosquitocidal agents, and the proposed mechanism of MgO nanoparticle toxicity toward life stages of mosquitoes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

SIT:

Sterile insect technique

ROS:

Reactive oxygen species

DDT:

Dichlorodiphenyltrichloroethane

DEET:

N,N-Diethyl-meta-toluamide

DEM:

N-Diethyl-mandelic acid amide

DMP:

Diethyl phthalate

IIT:

Incompatible insect technique

ZnO:

Zinc oxide

CuO:

Copper oxide

TiO2 :

Titanium dioxide

V2O5 :

Vanadium pentoxide

MgO:

Magnesium oxide

MRI:

Magnetic resonance imaging

ATP:

Adenosine triphosphate

References

  1. Harbach, R. E. (2007). The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa, 1668(1), 591–638.

    Google Scholar 

  2. Rueda, L. M. (2008). Global diversity of mosquitoes (Insecta: Diptera: Culicidae) in freshwater. Hydrobiologia, 595(1), 477–487.

    Google Scholar 

  3. Caraballo, H., & King, K. (2014). Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emergency Medicine Practice, 16(5), 1–23 quiz 23-24.

    Google Scholar 

  4. Daures, M., Champagnat, J., Pfannstiel, A., et al. (2015). Filariasis serosurvey, New Caledonia, South Pacific, 2013. Parasites & Vectors, 8(1), 102.

    Google Scholar 

  5. Dupont-Rouzeyrol, M., O’Connor, O., Calvez, E., et al. (2015). Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerging Infectious Diseases, 21(2), 381.

    Google Scholar 

  6. Heffelfinger, J. D., Li, X., Batmunkh, N., et al. (2017). Japanese encephalitis surveillance and immunization—Asia and Western Pacific Regions, 2016. MMWR. Morbidity and Mortality Weekly Report, 66(22), 579.

    Google Scholar 

  7. Campos, G. S., Bandeira, A. C., & Sardi, S. I. (2015). Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases, 21(10), 1885.

    Google Scholar 

  8. Hartman, A. (2017). Rift Valley Fever. Clinics in Laboratory Medicine, 37(2), 285–301.

    Google Scholar 

  9. Leparc-Goffart, I., Nougairede, A., Cassadou, S., et al. (2014). Chikungunya in the Americas. The Lancet, 383(9916), 514.

    Google Scholar 

  10. Iversen, J. O. (2017). Western equine encephalomyelitis. In Handbook of Zoonoses (pp. 25–31). 2nd Edition, Section B: CRC Press.

    Google Scholar 

  11. Genchi, C., Bowman, D., & Drake, J. (2014). Canine heartworm disease (Dirofilaria immitis) in Western Europe: survey of veterinary awareness and perceptions. Parasites & Vectors, 7(1), 206.

    Google Scholar 

  12. Rai, M., Ingle, A. P., Paralikar, P., et al. (2017). Recent advances in use of silver nanoparticles as antimalarial agents. International Journal of Pharmaceutics, 526(1-2), 254–270.

    Google Scholar 

  13. Organization WH. (2016). World malaria report 2015. World Health Organization.

  14. Shepard, D. S., Undurraga, E. A., Halasa, Y. A., et al. (2016). The global economic burden of dengue: a systematic analysis. The Lancet Infectious Diseases, 16(8), 935–941. https://doi.org/10.1016/S1473-3099(16)00146-8.

    Article  Google Scholar 

  15. Roth, A., Mercier, A., Lepers, C., et al. (2014). Concurrent outbreaks of dengue, chikungunya and Zika virus infections–an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveillance, 19(41), 20929.

    Google Scholar 

  16. Khater, H. F. (2018). Introductory chapter: the globalization of mosquito-borne diseases and their ecofriendly control. In From Local to Global Impact of Mosquitoes. IntechOpen.

  17. Govindarajan, M., & Benelli, G. (2016). One-pot fabrication of silver nanocrystals using Ormocarpum cochinchinense: biophysical characterization of a potent mosquitocidal and toxicity on non-target mosquito predators. Journal of Asia-Pacific Entomology, 19(2), 377–385.

    Google Scholar 

  18. Paulraj, M. G., Kumar, P. S., Ignacimuthu, S., et al. (2016). Natural insecticides from actinomycetes and other microbes for vector mosquito control. In Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization (pp. 85–99). Springer.

  19. Benelli, G. (2015). Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitology Research, 114(9), 3201–3212.

    Google Scholar 

  20. Benelli, G. (2015). Research in mosquito control: current challenges for a brighter future. Parasitology Research, 114(8), 2801–2805.

    Google Scholar 

  21. Lees, R. S., Gilles, J. R., Hendrichs, J., et al. (2015). Back to the future: the sterile insect technique against mosquito disease vectors. Current Opinion in Insect Science, 10, 156–162.

    Google Scholar 

  22. Bouyer, J., & Lefrançois, T. (2014). Boosting the sterile insect technique to control mosquitoes. Trends in Parasitology, 30(6), 271–273.

    Google Scholar 

  23. Bourtzis, K., Lees, R. S., Hendrichs, J., et al. (2016). More than one rabbit out of the hat: radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Tropica, 157, 115–130.

    Google Scholar 

  24. Carvalho, D. O., Costa-da-Silva, A. L., Lees, R. S., et al. (2014). Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Tropica, 132, S170–S177.

    Google Scholar 

  25. Benelli, G., & Mehlhorn, H. (2016). Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitology Research, 115(5), 1747–1754.

    Google Scholar 

  26. Wang, E. C., & Wang, A. Z. (2014). Nanoparticles and their applications in cell and molecular biology. Integrative Biology, 6(1), 9–26.

    Google Scholar 

  27. Zhang, W.-B., Yu, X., Wang, C.-L., et al. (2014). Molecular nanoparticles are unique elements for macromolecular science: from “nanoatoms” to giant molecules. Macromolecules, 47(4), 1221–1239.

    Google Scholar 

  28. Ayyub, P., Palkar, V., Chattopadhyay, S., et al. (1995). Effect of crystal size reduction on lattice symmetry and cooperative properties. Physical Review B, 51(9), 6135.

    Google Scholar 

  29. Hayashi, H., & Hakuta, Y. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3(7), 3794–3817.

    Google Scholar 

  30. Fierro, J. L. G. (2005). Metal oxides: chemistry and applications. CRC press.

  31. Falcaro, P., Ricco, R., Yazdi, A., et al. (2016). Application of metal and metal oxide nanoparticles@ MOFs. Coordination Chemistry Reviews, 307, 237–254.

    Google Scholar 

  32. Madhiyazhagan, P., Murugan, K., Kumar, A. N., et al. (2015). Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitology Research, 114(11), 4305–4317.

    Google Scholar 

  33. Benelli, G. (2016). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme and Microbial Technology, 95, 58–68.

    Google Scholar 

  34. Murugan, K., Raman, C., Panneerselvam, C., et al. (2016). Nano-insecticides for the control of human and crop pests. In Short Views on Insect Genomics and Proteomics (pp. 229–251). Springer.

  35. Nilsson, L. K., Sharma, A., Bhatnagar, R. K., et al. (2018). Presence of Aedes and Anopheles mosquito larvae is correlated to bacteria found in domestic water-storage containers. FEMS microbiology ecology, 94(6), fiy058.

    Google Scholar 

  36. Yalwala, S., Kollars, J. W., Kasembeli, G., et al. (2016). Preliminary report on the reduction of adult mosquitoes in housing compounds in western Kenya using the ProVector Flower and Entobac bait pads containing Bacillus thuringiensis israelensis with honey bait. Journal of Medical Entomology, 53(5), 1242–1244.

    Google Scholar 

  37. Farnesi LC, Vargas HC, Valle D et al (2017) Darker eggs resist more to desiccation: the case of melanin in Aedes, Anopheles and Culex mosquito vectors. bioRxiv:109223

  38. Shaalan, E. A.-S., Abdelsalam, S., Elmenshawy, O., et al. (2017). Mosquito vectors survey reveals new record of Culiseta subochrea in Al-Ahsa Oasis, Saudi Arabia. Asian Pacific Journal of Tropical Disease, 7(2), 106–111.

    Google Scholar 

  39. Fujita, R., Kuwata, R., Kobayashi, D., et al. (2017). Bustos virus, a new member of the negevirus group isolated from a Mansonia mosquito in the Philippines. Archives of Virology, 162(1), 79–88.

    Google Scholar 

  40. Blagrove, M. S., Sherlock, K., Chapman, G. E., et al. (2016). Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasites & Vectors, 9(1), 452.

    Google Scholar 

  41. Fischer, M., Scott, T.W., Margolis, H.S., et al. (2015). Dengue and chikungunya in our backyard: preventing Aedes mosquito-borne disease. Centers for Disease Control and Prevention (CDC) Public Health Grand Rounds, A report submitted to United States Department of Health and Human Services.

  42. Turell, M. J., Britch, S. C., Aldridge, R. L., et al. (2015). Potential for Psorophora columbiae and Psorophora ciliata mosquitoes (Diptera: Culicidae) to transmit Rift Valley fever virus. Journal of Medical Entomology, 52(5), 1111–1116.

    Google Scholar 

  43. Tippelt, L., Walther, D., & Kampen, H. (2017). The thermophilic mosquito species Uranotaenia unguiculata Edwards, 1913 (Diptera: Culicidae) moves north in Germany. Parasitology Research, 116(12), 3437–3440.

    Google Scholar 

  44. Vajda, E. A., Webb, C. E., Toi, C., et al. (2017). New Record of Wyeomyia mitchellii (Diptera: Culicidae) on Guam, United States. Journal of medical entomology, 55(2), 477480.

    Google Scholar 

  45. Azari-Hamidian, S., Norouzi, B., & Noorallahi, A. (2017). Orthopodomyia pulcripalpis (Diptera: Culicidae), a genus and species new to the Iranian mosquito fauna, with a review of bionomical information. Zootaxa, 4299(1), 141–145.

    Google Scholar 

  46. Betancourt, A., & Loaiza, J. R. (2016). An effective sampling tool for adult crabhole inhabiting Deinocerites mosquitoes. Journal of Vector Ecology, 41(1), 199–202.

    Google Scholar 

  47. Bhattacharya, S., Pal, S., & Acharyya, D. (2016). Are mosquitoes ‘a necessary evil’? International Journal of Fauna and Biological Studies, 3(1), 124–129.

    Google Scholar 

  48. Tolle, M. A. (2009). Mosquito-borne diseases. Current Problems in Pediatric and Adolescent Health Care, 39(4), 97–140.

    Google Scholar 

  49. Gingrich, J. B., & Williams, G. M. (2005). Host-feeding patterns of suspected West Nile virus mosquito vectors in Delaware, 2001–2002. Journal of the American Mosquito Control Association, 21(2), 194–200.

    Google Scholar 

  50. Medlock, J., Snow, K., & Leach, S. (2005). Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors. Medical and Veterinary Entomology, 19(1), 2–21.

    Google Scholar 

  51. Cupp, E. W., Zhang, D., Yue, X., et al. (2004). Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. The American Journal of Tropical Medicine and Hygiene, 71(3), 272–276.

    Google Scholar 

  52. Bayoh, M., & Lindsay, S. (2003). Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research, 93(5), 375–381.

    Google Scholar 

  53. Churcher, T. S., Sinden, R. E., Edwards, N. J., et al. (2017). Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts. PLoS Pathogens, 13(1), e1006108.

    Google Scholar 

  54. Rahman, S., Sharma, S., & Rajagopal, R. (1989). Manual on entomological surveillance of vector borne diseases (pp. 82–89). Delhi: Government of India, Ministry of Health and Family Welfare, Division of Medical Entomology.

    Google Scholar 

  55. Muthukumaran, U., Govindarajan, M., & Rajeswary, M. (2015). Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 114(3), 989–999.

    Google Scholar 

  56. Hay, S. I., Sinka, M. E., Okara, R. M., et al. (2010). Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Medicine, 7(2), e1000209.

    Google Scholar 

  57. Ricklin, M. E., García-Nicolás, O., Brechbühl, D., et al. (2016). Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nature Communications, 7, 10832.

    Google Scholar 

  58. Balaji, A., Ashu, A., Manigandan, S., et al. (2017). Polymeric nanoencapsulation of insect repellent: evaluation of its bioefficacy on Culex quinquefasciatus mosquito population and effective impregnation onto cotton fabrics for insect repellent clothing. Journal of King Saud University - Science, 29(4), 517–527.

    Google Scholar 

  59. Koudou, B. G., de Souza, D. K., Biritwum, N. K., et al. (2018). Elimination of lymphatic filariasis in west African urban areas: is implementation of mass drug administration necessary? The Lancet infectious diseases, 18(6), e214–e220.

    Google Scholar 

  60. Zamanian, M., Fraser, L. M., Agbedanu, P. N., et al. (2015). Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi. PLoS Neglected Tropical Diseases, 9(9), e0004069.

    Google Scholar 

  61. Jongthawin, J., Intapan, P. M., Lulitanond, V., et al. (2016). Detection and quantification of Wuchereria bancrofti and Brugia malayi DNA in blood samples and mosquitoes using duplex droplet digital polymerase chain reaction. Parasitology Research, 115(8), 2967–2972.

    Google Scholar 

  62. Pacheco-Coral, A., & Kett, M. (2016). Application of the social determinants of health to assess dengue control in an urban area of Colombia. International Journal of Infectious Diseases, 53, 159–160.

    Google Scholar 

  63. Monath, T. P., & Vasconcelos, P. F. (2015). Yellow fever. Journal of Clinical Virology, 64, 160–173.

    Google Scholar 

  64. Marcondes, C. B., & Ximenes, M. F. F. (2016). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical, 49(1), 4–10.

    Google Scholar 

  65. Monaghan, A.J., Morin, C.W., Steinhoff, D.F., et al. (2016). On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS currents, 8, doi: https://doi.org/10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.

  66. Naranjo, D. P., Beier, J. C., Gómez, E., et al. (2016). Entomological Impact and Current Perceptions of Novaluron and Temephos against the Aedes Aegypti (Skuse) Vector of Dengue, Chikungunya and Zika Arboviruses in a Coastal Town in Ecuador. Vector Biology Journal, 1(1), 2–8.

    Google Scholar 

  67. Moreira, L. A., Iturbe-Ormaetxe, I., Jeffery, J. A., et al. (2009). A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell, 139(7), 1268–1278.

    Google Scholar 

  68. Vega-Rúa, A., Zouache, K., Girod, R., et al. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of Virology, 88(11), 6294–6306.

    Google Scholar 

  69. Contreras-Gutierrez, M. A., Guzman, H., Thangamani, S., et al. (2017). Experimental infection with and maintenance of cell fusing agent virus (Flavivirus) in Aedes aegypti. The American Journal of Tropical Medicine and Hygiene, 97(1), 299–304.

    Google Scholar 

  70. Ndava, J., Llera, S. D., & Manyanga, P. (2018). The future of mosquito control: The role of spiders as biological control agents: A review. International Journal of Mosquito Research, 5(1), 6–11.

    Google Scholar 

  71. Rose, R. I. (2001). Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases, 7(1), 17.

    Google Scholar 

  72. Gonsalves, L., Law, B., Webb, C., et al. (2013). Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance. PLoS One, 8(5), e64081.

    Google Scholar 

  73. Chandra, G., Bhattacharjee, I., Chatterjee, S., et al. (2008). Mosquito control by larvivorous fish. The Indian Journal of Medical Research, 127(1), 13.

    Google Scholar 

  74. Raghavendra, K., Sharma, P., & Dash, A. (2008). Biological control of mosquito populations through frogs: opportunities & constrains. The Indian Journal of Medical Research, 128(1), 22.

    Google Scholar 

  75. Sarwar, M. (2015). Reducing dengue fever through biological control of disease carrier Aedes Mosquitoes (Diptera: Culicidae). International Journal of Preventive Medicine, 1(3), 161–166.

    MathSciNet  Google Scholar 

  76. Alkhaibari, A. M., Maffeis, T., Bull, J. C., et al. (2018). Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: is this a risky biocontrol strategy? Journal of Invertebrate Pathology, 153, 38–50.

    Google Scholar 

  77. Wu, T.-P., Tian, J.-H., Xue, R.-D., et al. (2016). Mosquito (Diptera: Culicidae) habitat surveillance by android mobile devices in Guangzhou, China. Insects, 7(4), 79.

    Google Scholar 

  78. Attaway, D. F., Jacobsen, K. H., Falconer, A., et al. (2014). Mosquito habitat and dengue risk potential in Kenya: alternative methods to traditional risk mapping techniques. Geospatial Health, 9(1), 119–130.

    Google Scholar 

  79. van den Berg, H., Zaim, M., Yadav, R. S., et al. (2012). Global trends in the use of insecticides to control vector-borne diseases. Environmental Health Perspectives, 120(4), 577.

    Google Scholar 

  80. Nauen, R. (2007). Insecticide resistance in disease vectors of public health importance. Pest Management Science, 63(7), 628–633.

    Google Scholar 

  81. van den Berg, H. (2009). Global status of DDT and its alternatives for use in vector control to prevent disease. Environmental Health Perspectives, 117(11), 1656–1663. https://doi.org/10.1289/ehp.0900785.

    Article  Google Scholar 

  82. Hemingway, J., & Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annual Review of Entomology, 45(1), 371–391.

    Google Scholar 

  83. Perez-Mendoza, J. (1999). Survey of insecticide resistance in Mexican populations of maize weevil, Sitophilus zeamais Motschulsky (coleoptera: curculionidae). Journal of Stored Products Research, 35(1), 107–115. https://doi.org/10.1016/S0022-474X(98)00017-4.

    Article  Google Scholar 

  84. Luck, R. F., & Dahlstein, D. L. (1975). Natural decline of a pine needle scale (Chionaspis pinifoliae [Fitch]), outbreak at South Lake Tahoe, California following cessation of adult mosquito control with malathion. Ecology, 56(4), 893–904.

    Google Scholar 

  85. Failloux, A.-B., Ung, A., Raymond, M., et al. (1994). Insecticide susceptibility in mosquitoes (Diptera: Culicidae) from French Polynesia. Journal of Medical Entomology, 31(5), 639–644. https://doi.org/10.1093/jmedent/31.5.639.

    Article  Google Scholar 

  86. Emameh, R. Z., Barker, H., Hytönen, V. P., et al. (2014). Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasites & Vectors, 7(1), 403.

    Google Scholar 

  87. Lee, S. E. (2000). Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. Journal of the American Mosquito Control Association-Mosquito News, 16(3), 245–247.

    Google Scholar 

  88. Curtis, C., Myamba, J., & Wilkes, T. (1996). Comparison of different insecticides and fabrics for anti-mosquito bednets and curtains. Medical and Veterinary Entomology, 10(1), 1–11.

    Google Scholar 

  89. Farenhorst, M., Knols, B. G., Thomas, M. B., et al. (2010). Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS One, 5(8), e12081.

    Google Scholar 

  90. Mohan, L., Sharma, P., & Srivastava, C. (2006). Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of the filarial vector Culex quinquefasciatus (Say). Entomological Research, 36(4), 220–225.

    Google Scholar 

  91. Pettit, W. J., Whelan, P. I., McDonnell, J., et al. (2010). Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. Journal of the American Mosquito Control Association, 26(4), 387–397.

    Google Scholar 

  92. Sulaiman, S., Pawanchee, Z., Othman, H. F., et al. (2002). Field evaluation of cypermethrin and cyfluthrin against dengue vectors in a housing estate in Malaysia. Journal of Vector Ecology, 27, 230–234.

    Google Scholar 

  93. Dennett, J. A., Bernhardt, J. L., & Meisch, M. V. (2003). Operational note effects of fipronil and lambda-cyhalothrin against larval Anopheles quadrimaculatus and nontarget aquatic mosquito predators in Arkansas small rice plots. Journal of the American Mosquito Control Association, 19(2), 172–174.

    Google Scholar 

  94. Sharma, S., Upadhyay, A., Haque, M., et al. (2005). Village-scale evaluation of mosquito nets treated with a tablet formulation of deltamethrin against malaria vectors. Medical and Veterinary Entomology, 19(3), 286–292.

    Google Scholar 

  95. Lee, H., Khadri, M., & Chiang, Y. (1997). Preliminary field evaluation of the combined adulticidal, larvicidal, and wall residual activity of ULV-applied bifenthrin against mosquitoes. Journal of Vector Ecology: Journal of the Society for Vector Ecology, 22(2), 146–149.

    Google Scholar 

  96. Lengeler, C. (2004). Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database of systematic reviews, 1(2), 1–46.

    Google Scholar 

  97. Mani, T., Arunachalam, N., Rajendran, R., et al. (2005). Efficacy of thermal fog application of deltacide, a synergized mixture of pyrethroids, against Aedes aegypti, the vector of dengue. Tropical Medicine & International Health, 10(12), 1298–1304.

    Google Scholar 

  98. Hemingway, J. (1995). Efficacy of etofenprox against insecticide susceptible and resistant mosquito strains containing characterized resistance mechanisms. Medical and Veterinary Entomology, 9(4), 423–426.

    Google Scholar 

  99. David, J.-P., Ismail, H. M., Chandor-Proust, A., et al. (2013). Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philosophical Transactions of The Royal Society B Biological Sciences, 368(1612), 20120429.

    Google Scholar 

  100. Lacey, L. A., & Lacey, C. M. (1990). The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. Journal of the American Mosquito Control Association Supplement, 2, 1–93.

    Google Scholar 

  101. Tami, A., Mubyazi, G., Talbert, A., et al. (2004). Evaluation of Olyset™ insecticide-treated nets distributed seven years previously in Tanzania. Malaria Journal, 3(1), 19.

    Google Scholar 

  102. Graham, K., Kayedi, M., Maxwell, C., et al. (2005). Multi-country field trials comparing wash-resistance of PermaNet™ and conventional insecticide-treated nets against anopheline and culicine mosquitoes. Medical and Veterinary Entomology, 19(1), 72–83.

    Google Scholar 

  103. Mabaso, M. L., Sharp, B., & Lengeler, C. (2004). Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying. Tropical Medicine & International Health, 9(8), 846–856.

    Google Scholar 

  104. N’Guessan, R., Corbel, V., Akogbéto, M., et al. (2007). Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerging Infectious Diseases, 13(2), 199.

    Google Scholar 

  105. Sadasivaiah, S., Tozan, Y., & Breman, J. G. (2007). Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control? The American Journal of Tropical Medicine and Hygiene, 77(6_Suppl), 249–263.

    Google Scholar 

  106. Pluess, B., Tanser, F. C., Lengeler, C., & Sharp, B. L. (2010). Indoor residual spraying for preventing malaria. Cochrane database of systematic reviews, 2010(4), CD006657.

    Google Scholar 

  107. Grieco, J. P., Achee, N. L., Chareonviriyaphap, T., et al. (2007). A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One, 2(8), e716.

    Google Scholar 

  108. Esu, E., Lenhart, A., Smith, L., et al. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Tropical Medicine & International Health, 15(5), 619–631.

    Google Scholar 

  109. Bonds, J. (2012). Ultra-low-volume space sprays in mosquito control: a critical review. Medical and Veterinary Entomology, 26(2), 121–130.

    Google Scholar 

  110. Mittal, P., Sreehari, U., Razdan, R., et al. (2011). Efficacy of Advanced Odomos repellent cream (N, N-diethyl-benzamide) against mosquito vectors. The Indian Journal of Medical Research, 133(4), 426.

    Google Scholar 

  111. Campos, D., Gravato, C., Quintaneiro, C., et al. (2016). Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET. Chemosphere, 149, 177–182.

    Google Scholar 

  112. Thorsell, W., Mikiver, A., Malander, I., et al. (1998). Efficacy of plant extracts and oils as mosquito repellents. Phytomedicine, 5(4), 311–323.

    Google Scholar 

  113. Das, N., Nath, D., Baruah, I., et al. (1999). Field evaluation of herbal mosquito repellents. The Journal of Communicable Diseases, 31(4), 241–245.

    Google Scholar 

  114. Gillij, Y., Gleiser, R., & Zygadlo, J. (2008). Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresource Technology, 99(7), 2507–2515.

    Google Scholar 

  115. Ansari, M., Vasudevan, P., Tandon, M., et al. (2000). Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresource Technology, 71(3), 267–271.

    Google Scholar 

  116. Tawatsin, A., Wratten, S. D., Scott, R. R., et al. (2001). Repellency of volatile oils from plants against three mosquito vectors. Journal of Vector Ecology, 26, 76–82.

    Google Scholar 

  117. Ansari, M., Mittal, P., Razdan, R., et al. (2005). Larvicidal and mosquito repellent activities of Pine (Pinus longifolia, Family: Pinaceae) oil. Journal of Vector Borne Diseases, 42(3), 95.

    Google Scholar 

  118. Oyedele, A., Gbolade, A., Sosan, M., et al. (2002). Formulation of an effective mosquito-repellent topical product from lemongrass oil. Phytomedicine, 9(3), 259–262.

    Google Scholar 

  119. Govindarajan, M., Rajeswary, M., Arivoli, S., et al. (2016). Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitology Research, 115(5), 1807–1816.

    Google Scholar 

  120. Zareen, S., Khan, S. N., Adnan, M., et al. (2016). Mixture of olive oil and Aloe vera gel: A natural mosquito repellent and a skin moisturizer. International Journal of Mosquito Research, 3(4), 48–49.

    Google Scholar 

  121. Khater HF, Selim AM, Abouelella GA et al (2019) Commercial mosquito repellents and their safety concerns. In: Malaria. IntechOpen

  122. Effiom, O. E., Avoaja, D. A., & Ohaeri, C. C. (2012). Mosquito repellent activity of phytochemical extracts from peels of citrus fruit species. Global Journal of Science Frontier Research, 12(1), 1–8.

    Google Scholar 

  123. Kumar, M. S., & Maneemegalai, S. (2008). Evaluation of larvicidal effect of Lantana camara Linn against mosquito species Aedes aegypti and Culex quinquefasciatus. Advances in Biology Research, 2(3-4), 39–43.

    Google Scholar 

  124. Venkatachalam, M., & Jebanesan, A. (2001). Repellent activity of Ferronia elephantum Corr.(Rutaceae) leaf extract against Aedes aegypti (L.). Bioresource Technology, 76(3), 287–288.

    Google Scholar 

  125. Prabhu, K., Murugan, K., Nareshkumar, A., et al. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1(2), 124–129.

    Google Scholar 

  126. Nyasembe, V. O., & Torto, B. (2014). Volatile phytochemicals as mosquito semiochemicals. Phytochemistry Letters, 8, 196–201.

    Google Scholar 

  127. Choochote, W., Tuetun, B., Kanjanapothi, D., et al. (2004). Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.)(Diptera: Culicidae). Journal of Vector Ecology, 29(2), 340–346.

    Google Scholar 

  128. Mehlhorn, H., Schmahl, G., & Schmidt, J. (2005). Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitology Research, 95(5), 363–365.

    Google Scholar 

  129. Govindarajan, M., Rajeswary, M., Hoti, S. L., et al. (2015). Mosquito repellent activity of Delonix elata (fabaceae) leaf and see d extracts against the primary dengue vector Aedes aegypti (Diptera: Culicidae). International Journal of Pure and Applied Zoology, 3(4), 312–317.

    Google Scholar 

  130. Mathew, N., Anitha, M., Bala, T., et al. (2009). Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitology Research, 104(5), 1017–1025.

    Google Scholar 

  131. Champakaew, D., Junkum, A., Chaithong, U., et al. (2016). Assessment of Angelica sinensis (Oliv.) Diels as a repellent for personal protection against mosquitoes under laboratory and field conditions in northern Thailand. Parasites & Vectors, 9(1), 373.

    Google Scholar 

  132. Anees, A. M. (2008). Larvicidal activity of Ocimum sanctum Linn.(Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitology Research, 103(6), 1451–1453.

    Google Scholar 

  133. Govindarajan, M. (2010). Larvicidal and repellent activities of Sida acuta Burm. F.(Family: Malvaceae) against three important vector mosquitoes. Asian Pacific Journal of Tropical Medicine, 3(9), 691–695.

    Google Scholar 

  134. Coria, C., Almiron, W., Valladares, G., et al. (2008). Larvicide and oviposition deterrent effects of fruit and leaf extracts from Melia azedarach L. on Aedes aegypti (L.)(Diptera: Culicidae). Bioresource Technology, 99(8), 3066–3070.

    Google Scholar 

  135. Das, N., Baruah, I., Talukdar, P., et al. (2003). Evaluation of botanicals as repellents against mosquitoes. Journal of Vector Borne Diseases, 40(1/2), 49.

    Google Scholar 

  136. Maletz, S., Wollenweber, M., Kubiak, K., et al. (2015). Investigation of potential endocrine disrupting effects of mosquito larvicidal Bacillus thuringiensis israelensis (Bti) formulations. Science of the Total Environment, 536, 729–738.

    Google Scholar 

  137. Federici, B. A., Park, H.-W., Bideshi, D. K., et al. (2007). Developing recombinant bacteria for control of mosquito larvae. Journal of the American Mosquito Control Association, 23(sp2), 164–175.

    Google Scholar 

  138. Liu, J.-W., Yap, W. H., Thanabalu, T., et al. (1996). Efficient synthesis of mosquitocidal toxins in Asticcacaulis excentricus demonstrates potential of gram-negative bacteria in mosquito control. Nature Biotechnology, 14(3), 343.

    Google Scholar 

  139. Moll, R. M., Romoser, W. S., Modrakowski, M. C., et al. (2001). Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. Journal of Medical Entomology, 38(1), 29–32.

    Google Scholar 

  140. Federici, B., Park, H.-W., Bideshi, D., et al. (2003). Recombinant bacteria for mosquito control. The Journal of Experimental Biology, 206(21), 3877–3885.

    Google Scholar 

  141. Vilela, R., Taylor, J. W., Walker, E. D., et al. (2015). Lagenidium giganteum pathogenicity in mammals. Emerging Infectious Diseases, 21(2), 290.

    Google Scholar 

  142. Choi, K. S., & Jung, H.-Y. (2015). Mosquito control using entomopathogenic fungi. Korean Journal of Mycology, 43(2), 77–87.

    Google Scholar 

  143. Abbasi, A., Sufyan, M., & Ashraf, H. J. (2017). A review on biological control of mosquito vectors. World Academy of Science, Engineering and Technology, International Journal of Bioengineering and Life Sciences, 4(12), 1–12.

    Google Scholar 

  144. Scholte, E.-J., Knols, B. G., Samson, R. A., et al. (2004). Entomopathogenic fungi for mosquito control: a review. Journal of Insect Science, 4(1), 19.

    Google Scholar 

  145. Thomas, M. B., & Read, A. F. (2007). Can fungal biopesticides control malaria? Nature Reviews. Microbiology, 5(5), 377.

    Google Scholar 

  146. El-Husseini, M. M. (2006). Microbial control of insect pests: is it an effective and environmentally safe alternative. Arab Journal of Plant Protection, 24(2), 162–169.

    Google Scholar 

  147. Lacey, L. A., & Undeen, A. H. (1986). Microbial control of black flies and mosquitoes. Annual Review of Entomology, 31(1), 265–296.

    Google Scholar 

  148. Benelli, G., Murugan, K., Panneerselvam, C., et al. (2015). Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitology Research, 114(2), 391–397.

    Google Scholar 

  149. Perumalsamy, H., Jang, M. J., Kim, J.-R., et al. (2015). Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites & Vectors, 8(1), 237.

    Google Scholar 

  150. Hong, T. K., Perumalsamy, H., Jang, K. H., et al. (2018). Ovicidal and larvicidal activity and possible mode of action of phenylpropanoids and ketone identified in Syzygium aromaticum bud against Bradysia procera. Pesticide biochemistry and physiology, 145, 29–38.

    Google Scholar 

  151. Masi, M., van der Westhuyzen, A. E., Tabanca, N., et al. (2017). Sarniensine, a mesembrine-type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia, 116, 34–38.

    Google Scholar 

  152. Kumar, N. S., Reddy, V. S., Bhaumik, A., et al. (2016). Carotenoid rodoxanthine obtained from the seeds of Ricinus communis act as potential hepatocytes regenerators. IJAR, 2(6), 397–404.

    Google Scholar 

  153. Muley, B. P., Khadabadi, S. S., & Banarase, N. B. (2009). Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Tropical Journal of Pharmaceutical Research, 8(5), 455–465.

    Google Scholar 

  154. da Silva, G. N., Trindade, F. T., dos Santos, F., et al. (2016). Larvicidal activity of natural and modified triterpenoids against Aedes aegypti (Diptera: Culicidae). Pest Management Science, 72(10), 1883–1887.

    Google Scholar 

  155. Alencar Filho, E. B., Silva, J. W. C., & Cavalcanti, S. C. (2016). Quantitative structure-toxicity relationships and molecular highlights about Aedes aegypti larvicidal activity of monoterpenes and related compounds. Medicinal Chemistry Research, 25(10), 2171–2178.

    Google Scholar 

  156. Tyagi, V., Patel, R., Hazarika, H., et al. (2017). Chemical composition and bioefficacy for larvicidal and pupicidal activity of essential oils against two mosquito species. International Journal of Mosquito Research, 4(4), 112–118.

    Google Scholar 

  157. Krishnamoorthy, S., Chandrasekaran, M., Raj, G. A., et al. (2015). Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L.(Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 114(5), 1839–1845.

    Google Scholar 

  158. Cabrera, M., Bogan, S., Posadas, P., et al. (2017). Risks associated with introduction of poeciliids for control of mosquito larvae: first record of the non-native Gambusia holbrooki in Argentina. Journal of Fish Biology, 91(2), 704–710.

    Google Scholar 

  159. Kumar, R., Muhid, P., Dahms, H.-U., et al. (2015). Biological mosquito control is affected by alternative prey. Zoological Studies, 54(1), 55.

    Google Scholar 

  160. Griffin, L. (2014). Laboratory evaluation of predation on mosquito larvae by Australian mangrove fish. Journal of Vector Ecology, 39(1), 197–203.

    Google Scholar 

  161. Connolly, R. M. (2005). Modification of saltmarsh for mosquito control in Australia alters habitat use by nekton. Wetlands Ecology and Management, 13(2), 149–161.

    Google Scholar 

  162. Azevedo-Santos, V. M., Vitule, J. R., Pelicice, F. M., et al. (2016). Nonnative fish to control Aedes mosquitoes: a controversial, harmful tool. BioScience, 67(1), 84–90.

    Google Scholar 

  163. Murugan, K., Venus, J. S. E., Panneerselvam, C., et al. (2015). Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environmental Science and Pollution Research, 22(21), 17053–17064.

    Google Scholar 

  164. Han, W., Lazaro, A., McCall, P., et al. (2015). Efficacy and community effectiveness of larvivorous fish for dengue vector control. Tropical Medicine & International Health, 20(9), 1239–1256.

    Google Scholar 

  165. Martinez-Ibarra, J., Guillén, Y. G., Arredondo-Jimenez, J., et al. (2002). Indigenous fish species for the control of Aedes aegypti in water storage tanks in Southern Mexico. BioControl, 47(4), 481–486.

    Google Scholar 

  166. Torrente, A., Rojas, W., Urán, A., et al. (1993). Fish species from mosquito breeding ponds in Nortwestern Colombia: evaluation of feeding habits and distribution. Memórias do Instituto Oswaldo Cruz, 88(4), 625–627.

    Google Scholar 

  167. Benelli, G., Caselli, A., & Canale, A. (2017). Nanoparticles for mosquito control: challenges and constraints. Journal of King Saud University - Science, 29(4), 424–435.

    Google Scholar 

  168. Anogwih, J. A., Makanjuola, W. A., & Chukwu, L. O. (2015). Potential for integrated control of Culex quinquefasciatus (Diptera: Culicidae) using larvicides and guppies. Biological Control, 81, 31–36.

    Google Scholar 

  169. Ekanayake, D., Weeraratne, T., De Silva, W., et al. (2007). Potential of some selected larvivorous fish species in Aedes mosquito control. iPURSE, 12, 98–100.

    Google Scholar 

  170. Bowatte, G., Perera, P., Senevirathne, G., et al. (2013). Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biological Control, 67(3), 469–474.

    Google Scholar 

  171. Anbu, P., Murugan, K., Madhiyazhagan, P., et al. (2016). Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi? Natural Product Research, 30(18), 2077–2084.

    Google Scholar 

  172. Murugan, K., Benelli, G., Panneerselvam, C., et al. (2015). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 153, 129–138.

    Google Scholar 

  173. Nathiya, V., Saravana Bhavan, P., Murugan, K., et al. (2015). Predatory ability of Mesocyclops aspericornis on the larvae of Culex quinquefasciatus under monocrotophos polluted condition. International Journal of Modern Research and Reviews, 3(3), 630–634.

    Google Scholar 

  174. Benelli, G., Rajeswary, M., & Govindarajan, M. (2018). Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environmental Science and Pollution Research, 25(11), 10218–10227.

    Google Scholar 

  175. Knipling, E. F. (1959). Sterile-male method of population control: successful with some insects, the method may also be effective when applied to other noxious animals. Science, 130(3380), 902–904.

    Google Scholar 

  176. Mishra, A., Ambrosio, B., Gakkhar, S., et al. (2018). A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences and Engineering: MBE, 15(2), 441–460.

    MathSciNet  MATH  Google Scholar 

  177. Lebon C, Benlali A, Atyame CM et al (2018) Construction of a genetic sexing strain for Aedes albopictus: a promising tool for the development of sterilizing insect control strategies targeting the tiger mosquito. bioRxiv:274712

  178. Danbaba, U.A. and Garba, S.M., (2018). Analysis of model for the transmission dynamics of Zika with sterile insect technique. In Biomath Forum, Sofia, Mathematical Methods and Models in Biosciences. University British Columbia, Canada: GNU General Public License (pp. 81-99).

  179. Nouzova, M., Michalkova, V., Hernández-Martínez, S., et al. (2018). JH biosynthesis and hemolymph titers in adult male Aedes aegypti mosquitoes. Insect Biochemistry and Molecular Biology, 95, 10–16.

    Google Scholar 

  180. Lindsey, A. R., Rice, D. W., Bordenstein, S. R., Brooks, A. W., Bordenstein, S. R., & Newton, I. L. (2018). Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome biology and evolution, 10(2), 434–451.

    Google Scholar 

  181. Altinli, M., Gunay, F., Alten, B., et al. (2018). Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasites & Vectors, 11(1), 198.

    Google Scholar 

  182. Zhang, D., Li, Y., Sun, Q., et al. (2018). Establishment of a medium-scale mosquito facility: tests on mass production cages for Aedes albopictus (Diptera: Culicidae). Parasites & Vectors, 11(1), 189.

    Google Scholar 

  183. Ritchie, S. A., van den Hurk, A. F., Smout, M. J., et al. (2018). Mission accomplished? We need a guide to the ‘post release’world of Wolbachia for Aedes-borne disease control. Trends in parasitology, 34(3), 217–226.

    Google Scholar 

  184. Araújo, H. R., Carvalho, D. O., Ioshino, R. S., et al. (2015). Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Insects, 6(2), 576–594.

    Google Scholar 

  185. Zhang, D., Lees, R. S., Xi, Z., et al. (2015). Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS One, 10(8), e0135194.

    Google Scholar 

  186. Atyame, C. M., Cattel, J., Lebon, C., et al. (2015). Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions. PLoS One, 10(3), e0119288.

    Google Scholar 

  187. Bourtzis, K., Dobson, S. L., Xi, Z., et al. (2014). Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica, 132, S150–S163. https://doi.org/10.1016/j.actatropica.2013.11.004.

    Article  Google Scholar 

  188. Baldacchino, F., Caputo, B., Chandre, F., et al. (2015). Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Management Science, 71(11), 1471–1485.

    Google Scholar 

  189. Yakob, L., & Walker, T. (2016). Zika virus outbreak in the Americas: the need for novel mosquito control methods. The Lancet Global Health, 4(3), e148–e149.

    Google Scholar 

  190. Quinlan, M. M., Mutunga, J. M., Diabaté, A., et al. (2018). Studies of transgenic mosquitoes in disease-endemic countries: preparation of containment facilities. Vector Borne and Zoonotic Diseases, 18(1), 21–30.

    Google Scholar 

  191. Thomas, D. D., Donnelly, C. A., Wood, R. J., et al. (2000). Insect population control using a dominant, repressible, lethal genetic system. Science, 287(5462), 2474–2476.

    Google Scholar 

  192. Wilke, A. B., Beier, J. C., & Benelli, G. (2018). Transgenic mosquitoes–fact or fiction? Trends in parasitology, 34(6), 456–465.

    Google Scholar 

  193. Garziera, L., Pedrosa, M. C., Souza, F. A., et al. (2017). Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomologia Experimentalis et Applicata, 164(3), 327–339.

    Google Scholar 

  194. Simões, M. L., Dong, Y., Hammond, A., et al. (2017). The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression. Developmental and Comparative Immunology, 67, 257–265.

    Google Scholar 

  195. Sampath, L. D. S., Gunawardene, Y. I. N. S., & Dassanayake, R. S. (2015). Transgenic mosquitoes to control vector borne diseases. Biochemistry & Analytical Biochemistry, 4(3), 1000182.

    Google Scholar 

  196. Prajapati, V., Tripathi, A., Aggarwal, K., et al. (2005). Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology, 96(16), 1749–1757.

    Google Scholar 

  197. Grieco, J. P., Achee, N. L., Sardelis, M. R., et al. (2005). A novel high-throughput screening system to evaluate the behavioral response of adult mosquitoes to chemicals. Journal of the American Mosquito Control Association, 21(4), 404–411.

    Google Scholar 

  198. Yewhalaw, D., & Kweka, E. J. (2016). Insecticide resistance in East Africa—history, distribution and drawbacks on malaria vectors and disease control. In Insecticides Resistance. InTech.

  199. Moiroux N, Djenontin A, Zogo B et al (2017) Small-scale field testing of Alpha-cypermethrin water-dispersible granules in comparison with the recommended wettable powder formulation for indoor residual spraying against malaria vectors in Benin. bioRxiv:204651

  200. Matthews, G., & Yadav, R. (2016). Indoor residual spraying for mosquito control-the importance of training spray operators. International Pest Control, 58(2), 84.

    Google Scholar 

  201. World Health Organization. (2003). Space spray application of insecticides for vector and public health pest control: a practitioner's guide (No. WHO/CDS/WHOPES/GCDPP/2003.5). Geneva: World Health Organization.

    Google Scholar 

  202. Amer, A., & Mehlhorn, H. (2006). Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitology Research, 99(4), 466–472.

    Google Scholar 

  203. Pavela, R., & Benelli, G. (2016). Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors–a review. Experimental Parasitology, 167, 103–108.

    Google Scholar 

  204. Su, T. (2016). Resistance and its management to microbial and insect growth regulator larvicides in mosquitoes. In Insecticides Resistance. InTech.

  205. Bonin, A., Paris, M., Frérot, H., et al. (2015). The genetic architecture of a complex trait: resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti. Infection, Genetics and Evolution, 35, 204–213.

    Google Scholar 

  206. Jutsum, A. (1988). Commercial application of biological control: status and prospects. Philosophical Transactions of the Royal Society of London B, 318(1189), 357–373.

    Google Scholar 

  207. Alphey, L., Benedict, M., Bellini, R., et al. (2010). Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne and Zoonotic Diseases, 10(3), 295–311.

    Google Scholar 

  208. Helinski, M. E., Parker, A. G., & Knols, B. G. (2006). Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malaria Journal, 5(1), 41.

    Google Scholar 

  209. Alphey, L. (2014). Genetic control of mosquitoes. Annual review of entomology, 59, 205–224.

    Google Scholar 

  210. Becker, N., Petrić, D., Zgomba, M., et al. (2010). Genetic control of mosquitoes. In Mosquitoes and Their Control (pp. 483–490). Springer.

  211. Lambrechts, L., Koella, J. C., & Boete, C. (2008). Can transgenic mosquitoes afford the fitness cost? Trends in Parasitology, 24(1), 4–7.

    Google Scholar 

  212. Kokoza, V., Ahmed, A., Wimmer, E., et al. (2001). Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggyBac transposable element vector pBac [3xP3-EGFP afm]. Insect Biochemistry and Molecular Biology, 31(12), 1137–1143.

    Google Scholar 

  213. Riehle, M. A., & Jacobs-Lorena, M. (2005). Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. Insect Biochemistry and Molecular Biology, 35(7), 699–707.

    Google Scholar 

  214. Lungu, M., Neculae, A., Bunoiu, M., et al. (2015). Nanoparticles’ promises and risks. Springer.

  215. Jeevanandam, J., Barhoum, A., Chan, Y. S., et al. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050.

    Google Scholar 

  216. Fernández-García, M., & Rodriguez, J. A. (2011). Metal oxide nanoparticles. Encyclopedia of inorganic and bioinorganic chemistry, 79479, 1–60.

    Google Scholar 

  217. Tso, C.-p., Zhung, C.-m., Shih, Y.-h., et al. (2010). Stability of metal oxide nanoparticles in aqueous solutions. Water Science and Technology, 61(1), 127–133.

    Google Scholar 

  218. Alves, T., Kolodziej, C., Burda, C., et al. (2018). Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Materials and Design, 146, 125–133.

    Google Scholar 

  219. Chen, D., Ai, S., Liang, Z., et al. (2016). Preparation and photocatalytic properties of zinc oxide nanoparticles by microwave-assisted ball milling. Ceramics International, 42(2), 3692–3696.

    Google Scholar 

  220. Azizi, S., Ahmad, M. B., Namvar, F., et al. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277.

    Google Scholar 

  221. Jeevanandam, J., San Chan, Y., & Danquah, M. K. (2016). Nano-formulations of drugs: recent developments, impact and challenges. Biochimie, 128, 99–112.

    Google Scholar 

  222. Vijayakumar, S., Vinoj, G., Malaikozhundan, B., et al. (2015). Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 137, 886–891. https://doi.org/10.1016/j.saa.2014.08.064.

    Article  Google Scholar 

  223. Ishwarya, R., Vaseeharan, B., Kalyani, S., et al. (2018). Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology, B: Biology, 178, 249–258. https://doi.org/10.1016/j.jphotobiol.2017.11.006.

    Article  Google Scholar 

  224. Ashokan, A. P., Paulpandi, M., Dinesh, D., et al. (2017). Toxicity on dengue mosquito vectors through Myristica fragrans-Synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). Journal of Cluster Science, 28(1), 205–226.

    Google Scholar 

  225. Jeevanandam, J., Sundaramurthy, A., Sharma, V., et al. (2020). Chapter 4 - Sustainability of one-dimensional nanostructures: fabrication and industrial applications. In G. Szekely & A. Livingston (Eds.), Sustainable nanoscale engineering (pp. 83–113). Elsevier. https://doi.org/10.1016/B978-0-12-814681-1.00004-7.

  226. Abinaya, M., Vaseeharan, B., Divya, M., et al. (2018). Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Journal of Trace Elements in Medicine and Biology, 45, 93–103.

    Google Scholar 

  227. Lozano, L. C., & Dussán, J. (2013). Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World Journal of Microbiology and Biotechnology, 29(8), 1383–1389.

    Google Scholar 

  228. Hirose, J., Ando, S., & Kidani, Y. (1987). Excess zinc ions are a competitive inhibitor for carboxypeptidase A. Biochemistry, 26(20), 6561–6565.

    Google Scholar 

  229. Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25(13), 12329–12341.

    Google Scholar 

  230. Raja, A., Ashokkumar, S., Marthandam, R. P., et al. (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology, B: Biology, 181, 53–58.

    Google Scholar 

  231. Odzak, N., Kistler, D., & Sigg, L. (2017). Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environmental Pollution, 226, 1–11.

    Google Scholar 

  232. George, S., Pokhrel, S., Xia, T., et al. (2009). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano, 4(1), 15–29.

    Google Scholar 

  233. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., et al. (2011). Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitology Research, 109(5), 1403–1415.

    Google Scholar 

  234. Selvan, S. M., Anand, K. V., Govindaraju, K., et al. (2018). Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnology, 12(8), 1042–1046.

    Google Scholar 

  235. Pang, Y.-P., Ekström, F., Polsinelli, G. A., et al. (2009). Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases. PLoS One, 4(8), e6851–e6851. https://doi.org/10.1371/journal.pone.0006851.

    Article  Google Scholar 

  236. Assadi, Z., Emtiazi, G., & Zarrabi, A. (2018). Hyperbranched polyglycerol coated on copper oxide nanoparticles as a novel core-shell nano-carrier hydrophilic drug delivery model. Journal of Molecular Liquids, 250, 375–380.

    Google Scholar 

  237. Singh, S., Kumar, N., Kumar, M., et al. (2017). Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical Engineering Journal, 313, 283–292.

    Google Scholar 

  238. Parnia, F., Yazdani, J., Javaherzadeh, V., et al. (2017). Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. Journal of Pharmacy & Pharmaceutical Sciences, 20, 148–160.

    Google Scholar 

  239. Wongrakpanich, A., Mudunkotuwa, I. A., Geary, S. M., et al. (2016). Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environmental Science: Nano, 3(2), 365–374.

    Google Scholar 

  240. Chakraborty, R., & Basu, T. (2017). Metallic copper nanoparticles induce apoptosis in a human skin melanoma A-375 cell line. Nanotechnology, 28(10), 105101.

    Google Scholar 

  241. Ivask, A., Scheckel, K. G., Kapruwan, P., et al. (2017). Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing. Nanotoxicology, 11(2), 150–156.

    Google Scholar 

  242. Líbalová, H., Costa, P. M., Olsson, M., et al. (2018). Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere, 196, 482–493.

    Google Scholar 

  243. Kadammattil, A. V., Sajankila, S. P., Prabhu, S., et al. (2018). Systemic toxicity and teratogenicity of copper oxide nanoparticles and copper sulfate. Journal of Nanoscience and Nanotechnology, 18(4), 2394–2404.

    Google Scholar 

  244. Rajakumar, G., Rahuman, A. A., Roopan, S. M., et al. (2015). Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitology Research, 114(2), 571–581.

    Google Scholar 

  245. Murugan, K., Jaganathan, A., Rajaganesh, R., et al. (2018). Poly (styrene sulfonate)/poly (allylamine hydrochloride) encapsulation of TiO2 nanoparticles boosts their toxic and repellent activity against Zika virus mosquito vectors. Journal of Cluster Science, 29(1), 27–39.

    Google Scholar 

  246. Suman, T. Y., Ravindranath, R. R. S., Elumalai, D., et al. (2015). Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pacific Journal of Tropical Disease, 5(3), 224–230.

    Google Scholar 

  247. Jin, C.-Y., Zhu, B.-S., Wang, X.-F., et al. (2008). Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical Research in Toxicology, 21(9), 1871–1877.

    Google Scholar 

  248. Saquib, Q., Al-Khedhairy, A. A., Siddiqui, M. A., et al. (2012). Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicology in Vitro, 26(2), 351–361.

    Google Scholar 

  249. Giovanni, M., Tay, C. Y., Setyawati, M. I., et al. (2015). Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environmental Toxicology, 30(12), 1459–1469.

    Google Scholar 

  250. Sha, B., Gao, W., Wang, S., et al. (2011). Cytotoxicity of titanium dioxide nanoparticles differs in four liver cells from human and rat. Composites, Part B: Engineering, 42(8), 2136–2144.

    Google Scholar 

  251. Govindarajan, M., Rajeswary, M., Veerakumar, K., et al. (2016). Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitology Research, 115(2), 723–733.

    Google Scholar 

  252. Mondal, N. K., & Hajra, A. (2016). Synthesis of copper nanoparticles (CuNPs) from petal extracts of marigold (Tagetes sp.) and sunflower (Helianthus sp.) and their effective use as a control tool against mosquito vectors. Journal of Mosquito Research, 6(19), 1–9.

    Google Scholar 

  253. Mashwani, Z. R. U. R., Raja, N. I., Ghaffar, A., et al. (2017). Sliver nanoparticle—a promising anti-mosquito’s agent: a review. Nanoscience and Nanotechnology Letters, 9(12), 1875–1890.

    Google Scholar 

  254. Auffan, M., Rose, J., Wiesner, M. R., et al. (2009). Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 157(4), 1127–1133.

    Google Scholar 

  255. Murugan, K., Dinesh, D., Nataraj, D., et al. (2018). Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environmental Science and Pollution Research, 25(11), 10504–10514.

    Google Scholar 

  256. Gopinath, K., Karthika, V., Sundaravadivelan, C., et al. (2015). Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry, 5(3), 295–303.

    Google Scholar 

  257. Murugan, K., Samidoss, C. M., Theerthagiri, J., et al. (2017). Solution combustion synthesis of hierarchically structured V2O5 nanoflakes: efficacy against Plasmodium falciparum, Plasmodium berghei and the malaria vector Anopheles stephensi. Journal of Cluster Science, 28(4), 2337–2348.

    Google Scholar 

  258. Elemike, E. E., Onwudiwe, D. C., Ekennia, A. C., et al. (2017). Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules, 22(5), 674.

    Google Scholar 

  259. Murugan, K., Nataraj, D., Jaganathan, A., et al. (2017). Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: impact on predation of non-target tadpoles, odonate nymphs and mosquito fishes. Journal of Cluster Science, 28(1), 393–411.

    Google Scholar 

  260. Kovendan, K., Chandramohan, B., Govindarajan, M., et al. (2018). Orchids as sources of novel nanoinsecticides? Efficacy of Bacillus sphaericus and Zeuxine gracilis-fabricated silver nanoparticles against dengue, malaria and filariasis mosquito vectors. Journal of Cluster Science, 29(2), 345–357.

    Google Scholar 

  261. Kumar, D., Kumar, G., Das, R., et al. (2018). Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Safety and Environment Protection, 116, 137–148.

    Google Scholar 

  262. Kumar, D., Kumar, G., & Agrawal, V. (2018). Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitology Research, 117(2), 377–389.

    MathSciNet  Google Scholar 

  263. Pavela, R. (2016). Encapsulation–a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Current Organic Chemistry, 20(25), 2674–2680.

    Google Scholar 

  264. Tavares, M., da Silva, M. R. M., de Siqueira, L. B. O., et al. (2018). Trends in insect repellent formulations: a review. International Journal of Pharmaceutics, 539(1-2), 190–209.

    Google Scholar 

  265. Gayathri, B., Muthukumarasamy, N., Velauthapillai, D., et al. (2016). Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arabian Journal of Chemistry, 11(5), 645–654.

    Google Scholar 

  266. Xu, B.-Q., Wei, J.-M., Wang, H.-Y., et al. (2001). Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catalysis Today, 68(1-3), 217–225.

    Google Scholar 

  267. Koper, O. B., Lagadic, I., Volodin, A., et al. (1997). Alkaline-earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities. Chemistry of Materials, 9(11), 2468–2480.

    Google Scholar 

  268. Mirzaei, H., & Davoodnia, A. (2012). Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chinese Journal of Catalysis, 33(9-10), 1502–1507.

    Google Scholar 

  269. Klabunde, K. J., Stark, J., Koper, O., et al. (1996). Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry, 100(30), 12142–12153.

    Google Scholar 

  270. McKenna, K. P., Koller, D., Sternig, A., et al. (2011). Optical properties of nanocrystal interfaces in compressed MgO nanopowders. ACS Nano, 5(4), 3003–3009.

    Google Scholar 

  271. Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168(2-3), 806–812.

    Google Scholar 

  272. Reddy AC Constitutive Behavior of AA5050/MgO Metal Matrix composites with interface debonding: the finite element method for uniaxial tension. In: 2nd National Conference on Materials and Manufacturing Processes, Hyderabad, India, 2000. pp 121–127

  273. Rao, K. V., & Sunandana, C. (2008). Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin films synthesized by solution growth route. Journal of Materials Science, 43(1), 146–154.

    Google Scholar 

  274. Huang, L., Li, D.-Q., Lin, Y.-J., et al. (2005). Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Journal of Inorganic Biochemistry, 99(5), 986–993.

    Google Scholar 

  275. Tang, Z.-X., & Lv, B.-F. (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Brazilian Journal of Chemical Engineering, 31(3), 591–601.

    Google Scholar 

  276. Hayat, S., Muzammil, S., Rasool, M. H., et al. (2018). In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiology and immunology, 62(4), 211–220.

    Google Scholar 

  277. Sawai, J., & Yoshikawa, T. (2004). Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology, 96(4), 803–809.

    Google Scholar 

  278. Koper, O. B., Klabunde, J. S., Marchin, G. L., et al. (2002). Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Current Microbiology, 44(1), 49–55.

    Google Scholar 

  279. Krishnamoorthy, K., Moon, J. Y., Hyun, H. B., et al. (2012). Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. Journal of Materials Chemistry, 22(47), 24610–24617.

    Google Scholar 

  280. Jin, T., & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13(12), 6877–6885.

    Google Scholar 

  281. Bertinetti, L., Drouet, C., Combes, C., et al. (2009). Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir, 25(10), 5647–5654.

    Google Scholar 

  282. Hasanein, P., Parviz, M., Keshavarz, M., et al. (2007). Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate. European Journal of Pharmacology, 554(2-3), 123–127.

    Google Scholar 

  283. Ullu, E., & Tschudi, C. (1990). Permeable trypanosome cells as a model system for transceiption and trans-splicing. Nucleic Acids Research, 18(11), 3319–3326.

    Google Scholar 

  284. Di, D.-R., He, Z.-Z., Sun, Z.-Q., et al. (2012). A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine: NBM, 8(8), 1233–1241.

    Google Scholar 

  285. Jeevanandam, J., Danquah, M. K., Debnath, S., et al. (2015). Opportunities for nano-formulations in type 2 diabetes mellitus treatments. Current Pharmaceutical Biotechnology, 16(10), 853–870.

    Google Scholar 

  286. Akram, M. W., Fakhar-e-Alam, M., Butt, A. R., et al. (2018). Magnesium Oxide in Nanodimension: Model for MRI and Multimodal Therapy. Journal of Nanomaterials, 2018(4210920), 1–12.

    Google Scholar 

  287. Lu, L., Zhang, L., Zhang, X., et al. (2010). A MgO nanoparticles composite matrix-based electrochemical biosensor for hydrogen peroxide with high sensitivity. Electroanalysis, 22(4), 471–477.

    Google Scholar 

  288. Akram, M. W., Fakhar-e-Alam, M., Atif, M., et al. (2018). In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Scientific Reports, 8(1), 4576.

    Google Scholar 

  289. Mangalampalli, B., Dumala, N., Perumalla Venkata, R., et al. (2018). Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. Environmental Toxicology, 33(4), 396–410.

    Google Scholar 

  290. Ivask, A., Titma, T., Visnapuu, M., et al. (2015). Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Current Topics in Medicinal Chemistry, 15(18), 1914–1929.

    Google Scholar 

  291. He, Y., Ingudam, S., Reed, S., et al. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of Nanbiotechnology, 14(1), 54. https://doi.org/10.1186/s12951-016-0202-0.

    Article  Google Scholar 

  292. Leung, Y. H., Ng, A. M., Xu, X., et al. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 10(6), 1171–1183.

    Google Scholar 

  293. Surachetpong, W., Pakpour, N., Cheung, K. W., et al. (2011). Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum. Antioxidants & Redox Signaling, 14(6), 943–955.

    Google Scholar 

  294. Caragata, E. P., Dutra, H. L., & Moreira, L. A. (2016). Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends in Parasitology, 32(3), 207–218.

    Google Scholar 

  295. Jahangiri, L., Kesmati, M., & Najafzadeh, H. (2014). Evaluation of anticonvulsive effect of magnesium oxide nanoparticles in comparison with conventional MgO in diabetic and non-diabetic male mice. Basic and Clinical Neuroscience Journal, 5(2), 156.

    Google Scholar 

  296. Resnick, L. M. (1997). Magnesium in the pathophysiology and treatment of hypertension and diabetes mellitus: where are we in 1997? Oxford University Press.

  297. Swaminathan, R. (2003). Magnesium metabolism and its disorders. Clinical Biochemist Reviews, 24(2), 47.

    Google Scholar 

  298. Fujita-Becker, S., Dürrwang, U., Erent, M., et al. (2005). Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. The Journal of Biological Chemistry, 280(7), 6064–6071.

    Google Scholar 

  299. Barbagallo, M., Dominguez, L. J., Galioto, A., et al. (2003). Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Molecular Aspects of Medicine, 24(1-3), 39–52.

    Google Scholar 

  300. Mooren, F. C., Stoll, R., Spyrou, E., et al. (1994). Stimulus-secretion coupling in rat parietal-cells is affected by extracellular magnesium. Biochemical and Biophysical Research Communications, 204(2), 512–518.

    Google Scholar 

  301. Barbagallo, M., & Resnick, L. M. (1996). Calcium and magnesium in the regulation of smooth muscle function and blood pressure. In Endocrinology of the Vasculature (pp. 283–300). Springer.

  302. Paolisso, G., & Barbagallo, M. (1997). Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. American Journal of Hypertension, 10(3), 346–355.

    Google Scholar 

  303. Krishnamoorthy, K., Manivannan, G., Kim, S. J., et al. (2012). Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. Journal of Nanoparticle Research, 14(9), 1063.

    Google Scholar 

  304. Ma, B., Yu, N., Han, Y., et al. (2018). Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor. Journal of Environmental Management, 222, 475–482. https://doi.org/10.1016/j.jenvman.2018.05.089.

    Article  Google Scholar 

  305. Jeevanandam, J. (2017). Enhanced synthesis and delivery of magnesium oxide nanoparticles for reverse insulin resistance in type 2 diabetes mellitus. Curtin University.

  306. Mangalampalli, B., Dumala, N., & Grover, P. (2018). Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. Journal of Environmental Sciences, 66, 125–137.

    Google Scholar 

  307. Cai, Y., Wu, D., Zhu, X., et al. (2017). Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation. Ceramics International, 43(1), 1066–1072.

    Google Scholar 

  308. Fu, P. P., Xia, Q., Hwang, H.-M., et al. (2014). Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64–75.

    Google Scholar 

  309. Magdolenova, Z., Collins, A., Kumar, A., et al. (2014). Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3), 233–278.

    Google Scholar 

  310. De Baaij, J. H., Hoenderop, J. G., & Bindels, R. J. (2015). Magnesium in man: implications for health and disease. Physiological Reviews, 95(1), 1–46.

    Google Scholar 

  311. Somerton, B., Lindsay, D., Palmer, J., et al. (2015). Changes in sodium, calcium, and magnesium ion concentrations that inhibit Geobacillus biofilms have no effect on Anoxybacillus flavithermus biofilms. Applied Environment Microbiology, 81(15), 5115–5122.

    Google Scholar 

  312. Sheplay, A. W., & Bradley, T. J. (1982). A comparative study of magnesium sulphate tolerance in saline-water mosquito larvae. Journal of Insect Physiology, 28(7), 641–646.

    Google Scholar 

  313. Abdelhameed, R. M., Kamel, O. M. H. M., Amr, A., et al. (2017). Antimosquito activity of a titanium–organic framework supported on fabrics. ACS Applied Materials & Interfaces, 9(27), 22112–22120. https://doi.org/10.1021/acsami.7b03164.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Department of Advanced Zoology and Biotechnology, Loyola College, Chennai, India, and the Loyola Institute of Frontier Energy (LIFE) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen San Chan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, M., Jeevanandam, J., Chan, Y.S. et al. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BioNanoSci. 10, 292–310 (2020). https://doi.org/10.1007/s12668-019-00703-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00703-2

Keywords

Navigation