Skip to main content
Log in

Serotonin Modulation of Premotor Interneuron Excitability in the Snail during Associative Learning

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

It is shown that after the elaboration of a conditioned reflex in snails, a reliable decrease can be observed in the membrane potential (Vm) of the premotor interneurons at 4 mV, daily injection of serotonin (5-HT) causes a decrease in Vm at 4.5 mV, the same change is observed for Vm in the snails trained after the injection of 5-HT. A single injection of 5-HT causes a depolarization shift of Vm at 5 mV. After the initial stage of training (10–12 pairs) the snails, injected by 5-HT, there is a depolarization at 4.5 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Balaban, P. M., Bravarenko, N. I., Maksimova, O. A., Nikitin, E., Ierusalimsky, V. N., Zakharov, I. S. (2001). A single serotoninergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail. Neurobiology of Learning and Memory, 75, 30–50. doi:10.1006/nlme.1999.3953.

    Article  Google Scholar 

  2. Dyakonova, V. E. (2007). Behavioral functions of serotonin and octopamin: some paradoxes of comparative physiology. Uspekhi Physiologicheskikh Nauk (Russian), 38, 3–20.

    Google Scholar 

  3. Il-Han, J., Janes, T., Lukowiak, K. (2010). The role of serotonin in the enhancement of long-term memory resulting from predator detection in Lymnaea. The Journal of Experimental Biology, 213, 3603–3614. doi:10.1242/jeb.048256.

    Article  Google Scholar 

  4. Andrianov, V. V., Bogodvid, T. K., Deryabina, I. B., Golovchenko, A. N., Muranova, L. N., Tagirova, R. R., et al. (2015). Modulation of defensive reflex conditioning in snails by serotonin. Frontiers in Behavioral Neuroscience, 9(Article 279), 1–12. doi:10.3389/fnbeh.2015.00279.

    Google Scholar 

  5. Zakharov, I. S., Ierusalimsky, V. N., Balaban, P. M. (1995). Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons of Helix. Invertebrate Neuroscience, 1, 41–52. doi:10.1007/BF02331831.

    Article  Google Scholar 

  6. Shevelkin, A. V., Nikitin, V. P., Kozyrev, S. A., Samoilov, M. O., Sherstnev, V. V. (1997). Serotonin imitates several of the neuronal effects of nociceptive sensitization in the common snail. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 47, 532–542.

    Google Scholar 

  7. Malyshev, A. Y., Bravarenko, N. I., Pivovarov, A. S., Balaban, P. M. (1997). Effects of serotonin levels on postsynaptically induced potentiation of snail neuron responses. Zhurnal vysshei nervnoi deiatelnosti imeni I. P. Pavlova (Russian), 47, 553–562.

    Google Scholar 

  8. Levenson, J., Byrne, J. H., Eskin, A. (1999). Levels of serotonin in the hemolymph of Aplysia are modulated by light/dark cycles and sensitization training. The Journal of Neuroscience, 19, 8094–8103.

    Google Scholar 

  9. Balaban, P. M. (2002). Cellular mechanisms of behavioral plasticity in terrestrial snail. Neuroscience and Biobehavioral Reviews, 26, 597–630.

    Article  Google Scholar 

  10. Muranova, L. N., Bogodvid, T. K., Andrianov, V. V., Gainutdinov, K. L. (2016). Effects of NO donors and inhibitors of NO synthase and guanylate cyclase on the acquisition of a conditioned defense food aversion response in edible snails. Bulletin of Experimental Biology and Medicine, 160, 414–416. doi:10.1007/s10517-.

    Article  Google Scholar 

  11. Liao, X., Brou, C. G., Walters, E. T. (1999). Limited contributions of serotonin to long-term hyperexcitability of Aplysia sensory neurons. Journal of Neurophysiology, 82, 3223–3235.

    Google Scholar 

  12. Jin, N. G., Tian, L.-M., Crow, T. (2009). 5-HT and GABA modulate intrinsic excitability of type I interneurons in Hermissenda. Journal of Neurophysiology, 102, 2825–2833. doi:10.1152/jn.00477.2009.

    Article  Google Scholar 

  13. Cleary, L. J., Lee, W. L., Byrne, J. H. (1998). Cellular correlates of long-term sensitization in Aplysia. The Journal of Neuroscience, 18, 5988–5998.

    Google Scholar 

  14. Gainutdinov, K. L., Chekmarev, L. Y., Gainutdinova, T. H. (1998). Excitability increase in withdrawal interneurons after conditioning in snail. NeuroReport, 9, 517–520. doi:10.1097/00001756-199802160-00026.

    Article  Google Scholar 

  15. Mozzachiodi, R., Lorenzetti, F. D., Baxter, D. A., Byrne, J. H. (2008). Changes in neuronal excitability serve as a mechanism of long-term memory for operant conditioning. Nature Neuroscience, 11, 1146–1148. doi:10.1038/nn.2184.

    Article  Google Scholar 

  16. Gainutdinov, K. L., Andrianov, V. V., Gainutdinova, T. K. (2011). Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory. Uspekhi Physiologicheskikh Nauk (Russian), 42, 33–52. PMID: 21442956.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy of the Russian Government to support the Program of Competitive Growth of Kazan Federal University among the World’s Leading Academic Centers (agreement No.02.A03.21.0002) and by Russian Fund of Basic Research (grant No. 15-04-05487_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil L. Gainutdinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovchenko, A.N., Andrianov, V.V., Bogodvid, T.K. et al. Serotonin Modulation of Premotor Interneuron Excitability in the Snail during Associative Learning. BioNanoSci. 6, 450–452 (2016). https://doi.org/10.1007/s12668-016-0252-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0252-7

Keywords

Navigation