Skip to main content
Log in

A Comparative Study of α-Hemolysin Expression in Supported Lipid Bilayers of Synthetic and Enriched Complex Bacterial Lipid

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The purpose of this short communication was to examine whether the formation of a supported lipid bilayer (SLB) made with purely synthetic lipid or with Escherichia coli complex lipid may have any influence on the production and incorporation of the transmembrane protein α-hemolysin from Staphylococcus. Different molar ratio of E. coli total extract lipid and synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were used to prepare SLB, which were characterized by combination of quartz crystal microbalance with dissipation monitoring (QCM-D), fluorescence recovery after photobleaching (FRAP), and atomic force microscopy (AFM). It was found that a 68:32 molar ratio was optimal to produce a SLB mimicking a bacterial lipid membrane. Comparing this later SLB with a purely synthetic SLB (100 % POPC) as receptacle for expression of the Staphylococcus α-hemolysin fused to eGFP by a cell-free expression system (CFES), we showed that both production and incorporation of this membrane protein was very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spector, A. A., & Yorek, M. A. (1985). Membrane lipid composition and cellular function. Journal of Lipid Research, 26, 1015–1035.

    Google Scholar 

  2. Tamm, L. K., & McConnell, H. M. (1985). Supported phospholipid bilayers. Biophysical Journal, 47, 105–113.

    Article  Google Scholar 

  3. Cremer, P. S., & Boxer, S. G. (1999). Formation and spreading of lipid bilayers on planar glass supports. The Journal of Physical Chemistry B, 103, 2554–2559.

    Article  Google Scholar 

  4. Reimhult, E., Zäch, M., Höök, F., Kasemo, B. (2006). A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir, 22, 3313–3319.

    Article  Google Scholar 

  5. Reimhult, E., Hook, F., Kasemo, B. (2002). Vesicle adsorption on SiO2 and TiO2: dependence on vesicle size. The Journal of Chemical Physics, 117, 7401–7404.

    Article  Google Scholar 

  6. Cho, N.-J., & Frank, C. W. (2010). Fabrication of a planar zwitterionic lipid bilayer on titanium oxide. Langmuir, 26, 15706–15710.

    Article  Google Scholar 

  7. Rossetti, F. F., Bally, M., Michel, R., Textor, M., Reviakine, I. (2005). Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir, 21, 6443–6450.

    Article  Google Scholar 

  8. Rossetti, F. F., Textor, M., Reviakine, I. (2006). Asymmetric distribution of phosphatidyl serine in supported phospholipid bilayers on titanium dioxide. Langmuir, 22, 3467–3473.

    Article  Google Scholar 

  9. Richter, R. P., Him, J. L. K., Brisson, A. (2003). Supported lipid membranes. Materials Today, 6, 32–37.

    Article  Google Scholar 

  10. Jackman, J., Knoll, W., Cho, N.-J. (2012). Biotechnology applications of tethered lipid bilayer membranes. Materials, 5, 2637–2657.

    Article  Google Scholar 

  11. Nedelkovski, V., Schwaighofer, A., Wraight, C. A., Nowak, C., Naumann, R. L. C. (2013). Surface-enhanced infrared absorption spectroscopy (SEIRAS) of light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomimetic membrane system. The Journal of Physical Chemistry C, 117, 16357–16363.

    Article  Google Scholar 

  12. Cabe, I. P. M. (2013). Polymer supported lipid bilayers. Open Journal of Biophysics, 03, 59–69.

    Article  Google Scholar 

  13. Merz, C., Knoll, W., Textor, M., Reimhult, E. (2008). Formation of supported bacterial lipid membrane mimics. Biointerphases, 3, FA41.

    Article  Google Scholar 

  14. Dodd, C. E., Johnson, B. R. G., Jeuken, L. J. C., Bugg, T. D. H., Bushby, R. J., Evans, S. D. (2008). Native E. coli inner membrane incorporation in solid-supported lipid bilayer membranes. Biointerphases, 3, FA59.

    Article  Google Scholar 

  15. Jadhav, S. R., Sui, D., Garavito, R. M., Worden, R. M. (2008). Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. Journal of Colloid and Interface Science, 322, 465–472.

    Article  Google Scholar 

  16. Weiss, S. A., Bushby, R. J., Evans, S. D., Henderson, P. J. F., Jeuken, L. J. C. (2009). Characterization of cytochrome bo3 activity in a native-like surface-tethered membrane. Biochemical Journal, 417, 555.

    Article  Google Scholar 

  17. Shin, J., & Noireaux, V. (2010). Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70. Journal of Biological Engineering, 4, 8.

    Article  Google Scholar 

  18. Wuu, J., & Swartz, J. (2008). High yield cell-free production of integral membrane proteins without refolding or detergents. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778, 1237–1250.

    Article  Google Scholar 

  19. Hovijitra, N. T., Wuu, J. J., Peaker, B., Swartz, J. R. (2009). Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 104, 40–49.

    Article  Google Scholar 

  20. Chalmeau, J., Monina, N., Shin, J., Vieu, C., Noireaux, V. (2011). [alpha]-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808, 271–278.

    Article  Google Scholar 

  21. Robelek, R., Lemker, E. S., Wiltschi, B., Kirste, V., Naumann, R., Oesterhelt, D., et al. (2007). Incorporation of in vitro synthesized GPCR into a tethered artificial lipid membrane system. Angewandte Chemie International Edition, 46, 605–608.

    Article  Google Scholar 

  22. Soumpasis, D. M. (1983). Theoretical analysis of fluorescence photobleaching recovery experiments. Biophysical Journal, 41, 95–97.

    Article  Google Scholar 

  23. Hutter, J. L., & Bechhoefer, J. (1993). Calibration of atomic-force microscope tips. Review of Scientific Instruments, 64, 1868.

    Article  Google Scholar 

  24. Keller, C., Glasmästar, K., Zhdanov, V., Kasemo, B. (2000). Formation of supported membranes from vesicles. Physical Review Letters, 84, 5443–5446.

    Article  Google Scholar 

  25. Keller, C. A., & Kasemo, B. (1998). Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophysical Journal, 75, 1397–1402.

    Article  Google Scholar 

  26. Liang, X., Mao, G., Simon Ng, K. (2004). Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 34, 41–51.

    Article  Google Scholar 

  27. Voinova, M. V., Rodahl, M., Jonson, M., Kasemo, B. (1999). Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta, 59, 391–396.

    Article  Google Scholar 

  28. Glasmästar, K., Larsson, C., Höök, F., Kasemo, B. (2002). Protein adsorption on supported phospholipid bilayers. Journal of Colloid and Interface Science, 246, 40–47.

    Article  Google Scholar 

  29. Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J. E. (1996). Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 274, 1859–1865.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency (ANR) (FLANAMOVE project). The content of this work is the sole responsibility of the authors. QCM-D experiments and AFM imaging were performed at the “Institut des Technologies Avancées en Sciences du Vivant” (Toulouse, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélique Coutable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(PDF 81 kb)

Figure S2

(PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coutable, A., Randrianjatovo, I., Noireaux, V. et al. A Comparative Study of α-Hemolysin Expression in Supported Lipid Bilayers of Synthetic and Enriched Complex Bacterial Lipid. BioNanoSci. 4, 104–110 (2014). https://doi.org/10.1007/s12668-014-0127-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0127-8

Keywords

Navigation