Skip to main content
Log in

Sensitivity of air desiccant cooling system to climatic conditions: a comparative study on many systems

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Air desiccant cooling systems are burgeoning. Their major advantage is the use of water alone as a refrigerant. Pairing with efficient solar panels looks promising. Much research is underway to improve the techniques and performances of installations. In this article, we present the results of a calculation code that we developed from experimental data. It studies the conditions of air treatment by desiccation according to three different techniques with wide intervals of climatic conditions in order to point the limits of applicability. The objective is to precisely define the area in which each type of handling system can be used. We started by simulating the treatment of the air in the desiccant handling system (DHU) operating according to four techniques in order to choose one for the Algerian climate. A validation of the results with the experimental data was made. According to our calculations, DHU using Pennington cycle are not able to achieve satisfactory comfort conditions. An improvement in the Pennington cycle is proposed. It consists in adding an exchanger cooled by the water leaving the heating circuit and which is used to cool the fresh air. This solution seems effective and gives clearly acceptable results for the climatic conditions studied. In the last part of this article, we present the calculation results relating to the sensitivity of each technique to variations in temperature and humidity conditions. We have thus successfully delimited the climatic zones of applicability of each system from the process of the evolution of the air inside the building (coefficient ɛ). It has been confirmed that the improved Pennington cycle is the system best suited to Algerian climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

AHU:

Air handing unit

amb:

Ambient

COP:

Coefficient of performance

DHU:

Desiccant handing unit

DW:

Desiccant wheel

E:

Outlet point

Elec:

Electric

Exp:

Experimental

h:

Enthalpy (kJ/kg)

HC:

Heat exchanger

Hum:

Humidifier

I:

Inlet point

\( \dot{m} \) :

Mass flow rate (kg/h)

ret:

Return

RH:

Relative humidity (%)

sol:

Solar

sim:

Simulation

SW:

Rotary heat exchanger

t:

Temperature (°C)

x:

Humidity ratio (gwater vapor/kgdry air)

z:

Altitude (m)

∆:

Difference

η:

Efficiency

ε:

Direction of air treatment (kJ/kgda)

ρ:

Volumic mass (kg/m3)

da:

Dry air

e:

Outlet

h:

Humide

i:

Inlet

max:

Maximum

min:

Minimum

s:

Blowing

References

  1. Maalouf, C.: Etude du potentiel de rafraîchissement d’un système évaporatif à désorption avec régénération solaire. in https://tel.archives-ouvertes.fr/tel-00134779/.. Université de La Rochelle, p. 220 (2006)

  2. Vitte, T.: Le froid solaire par dessiccation appliqué au bâtiment. Proposition d’une stratégie de régulation du système. [Doctoral thesis]. http://theses.insa-lyon.fr/publication/2007ISAL0100/these.pdf:INSA de Lyon, p. 192 (2007)

  3. Joubert, P.: Rafraîchissement solaire par dessiccation et régénération solaire. laboratoire des sciences de l’ingénieur pour l’environnement (2012)

  4. Yang, W., Liu, S., Zhai, X., Bi, Y., Wang, Z., Zhao, X.: Solar desiccant (absorption/adsorption) cooling/dehumidification technologies,” in advanced energy efficiency technologies for solar heating, cooling and power generation, pp. 211–286. Springer, Berlin (2019)

    Book  Google Scholar 

  5. Bourdoukan, P., Wurtz, E., Joubert, P., Sperandio, M.: Potential of solar heat pipe vacuum collectors in the desiccant cooling process: modelling and experimental results. Sol. Energy 82, 1209–1219 (2008)

    Article  Google Scholar 

  6. Henning, H., Erpenbeck, T., Hindenburg, C., Santamaria, I.: The potential of solar energy use in desiccant cooling cycles. Int. J. Refrig 24, 220–229 (2001)

    Article  Google Scholar 

  7. Li, H., Dai, Y.J., Köhler, M., Wang, R.Z.: Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors. Energy Convers. Manage. 67, 309–317 (2013)

    Article  Google Scholar 

  8. Labed, A., Rouag, A., Benchabane, A., Moummi, N., Zerouali, M.: Applicability of solar desiccant cooling systems in Algerian Sahara: experimental investigation of flat plate collectors. J. Appl, Eng. Sci. Technol. 1, 61–69 (2015)

    Google Scholar 

  9. Fan, W., Kokogiannakis, G., Ma, Z.: Integrative modelling and optimisation of a desiccant cooling system coupled with a photovoltaic thermal-solar air heater. Sol. Energy 193, 929–947 (2019)

    Article  Google Scholar 

  10. Berardi, U., Heidarinejad, G., Rayegan, S., Pasdarshahri, H.: Enhancing the cooling potential of a solar-assisted desiccant cooling system by ground source free cooling. In: Presented at Building Simulation (2020)

  11. La, D., Dai, Y.J., Li, Y., Tang, Z.Y., Ge, T.S., Wang, R.Z.: An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling. Appl. Energy Spec. Issue Adv. Sustain. Biofuel Prod. Use XIX Int. Symp. Alcohol Fuels ISAF 102, 1218–1228 (2013)

    Google Scholar 

  12. Delfani, S., Karami, M.: Transient simulation of solar desiccant/M-Cycle cooling systems in three different climatic conditions. J. Build. Eng. 29, 101152 (2020)

    Article  Google Scholar 

  13. Bourdoukan, P.: Etude numérique et expérimentale destinée à l’exploitation des techniques de rafraîchissement par dessiccation avec régénération par énergie solaire. In: UFR Science Fondamontales et Science pour l’Ingénieur in http://www.theses.fr/2008LAROS247 Université de la Rochelle, p. 141 (2008)

  14. Sahlot, M., Riffat, S.B.: Desiccant cooling systems: a review. Int. J. Low Carbon Technol. 11, 489–505 (2016)

    Google Scholar 

  15. Buker, M.S., Riffat, S.B.: Recent developments in solar assisted liquid desiccant evaporativecooling technology—a review. Energy Build. 96, 95–108 (2015)

    Article  Google Scholar 

  16. Aoun, N., Bouchouicha, K.: Estimating daily global solar radiation by day of the year in Algeria. Eur. Phys. J. Plus 132, 216 (2017)

    Article  Google Scholar 

  17. Rayegan, S., Motaghian, S., Heidarinejad, G., Pasdarshahri, H., Ahmadi, P., Rosen, M.A.: Dynamic simulation and multi-objective optimization of a solar-assisted desiccant cooling system integrated with ground source renewable energy. Appl. Therm. Eng. 1, 115210 (2020)

    Article  Google Scholar 

  18. Zerouali, M., Labed, N.: Etude de faisabilité d’une installation de rafraîchissement solaire par dessiccation avec les conditions climatiques de la ville d’Ain Beida. In: Université d’Oum-El-Bouaghi, Master 2011 in http://bib.univ-oeb.dz:8080/jspui/handle/123456789/7935 Université d’Oum-El-Bouaghi, p. 104 (2011)

  19. Labed, N., Joubert, P., Burlot, M.: Etude expérimentale d’évaluation du potentiel de rafraîchissement des bâtiments à l’aide d’une centrale de traitement d’air à dessiccation et régénération solaire pour les climats semi-arides. Université de La Rochelle, Rapport d’activité (2012)

    Google Scholar 

  20. Labed, N., Joubert, P., Burlot, M.: Des résultats prometteurs pour le rafraîchissement des régions très ensoleillées. Revue Générale du Froid 1168, 32–39 (2018)

    Google Scholar 

  21. Ali, M., Vukovic, V., Sheikh, N.A., Ali, H.M.: Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones. Energy Convers. Manage. 97, 323–339 (2015)

    Article  Google Scholar 

  22. Farooq, A.S., Badar, A.W., Sajid, M.B., Fatima, M., Zahra, A., Siddiqui, M.S.: Dynamic simulation and parametric analysis of solar assisted desiccant cooling system with three configuration schemes. Sol. Energy 197, 22–37 (2020)

    Article  Google Scholar 

  23. Jani, D., Bhabhor, K., Dadi, M., Doshi, S., Jotaniya, P., Ravat, H., Bhatt, K.: A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. J. Therm. Anal. Calorimetry 1, 1–21 (2019)

    Google Scholar 

  24. Pandelidis, D., Anisimov, S., Worek, W.M., Drag, P.: Comparison of desiccant air conditioning systems with different indirect evaporative air coolers. Energy Convers. Manage. 117, 375–392 (2016)

    Article  Google Scholar 

  25. Pacak, A., Cichon, A., Pandelidis, D., Anisimov, S.: Impact of indirect evaporative air cooler type on the performance of desiccant systems. In: Presented at E3S Web of Conferences (2018)

  26. Pandelidis, D., Anisimov, S., Worek, W.M., Drag, P.: Analysis of different applications of Maisotsenko cycle heat exchanger in the desiccant air conditioning systems. Energy Build. 140, 154–170 (2017)

    Article  Google Scholar 

  27. Zouaoui, A., Zili-Ghedira, L., Nasrallah, S.B.: Open solid desiccant cooling air systems: a review and comparative study. Renew. Sustain. Energy Rev. 54, 889–917 (2016)

    Article  Google Scholar 

  28. Zouaoui, A., Zili-Ghedira, L., Nasrallah, S.B.: Solid desiccant solar air conditioning unit in Tunisia: numerical study. Int. J. Refrig 74, 662–681 (2017)

    Article  Google Scholar 

  29. Comino, F., Gonzalez, J.C., Navas-Martos, F., de Adana, M.R.: Experimental energy performance assessment of a solar desiccant cooling system in Southern Europe climates. Appl. Therm. Eng. 165, 114579 (2020)

    Article  Google Scholar 

  30. Fong, K., Lee, C.: Solar desiccant cooling system for hot and humid region—a new perspective and investigation. Sol. Energy 195, 677–684 (2020)

    Article  Google Scholar 

  31. Mazzei, P., Minichiello, F., Palma, D.: Desiccant HVAC systems for commercial buildings. Appl. Therm. Eng. 22, 545–560 (2002)

    Article  Google Scholar 

  32. Ghiaus, C., Ghazal, R., Joubert, P., Hayyani, M.Y.: Gray-box state-space model and parameter identification of desiccant wheels. Appl. Therm. Eng. 51, 742–752 (2013)

    Article  Google Scholar 

  33. Jia, C., Dai, Y., Wu, J., Wang, R.: Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Convers. Manage. 47, 2523–2534 (2006)

    Article  Google Scholar 

  34. Bourdoukan, P., Wurtz, E., Joubert, P.: Experimental investigation of a solar desiccant cooling installation. Sol. Energy 83, 2059–2073 (2009)

    Article  Google Scholar 

  35. Köppen, W., Geiger, R.: Handbuch der klimatologie, vol. 1. Gebrüder Borntraeger, Berlin (1930)

    Google Scholar 

  36. Rjibi, A., Kooli, S., Guizani, A.: The effects of regeneration temperature of the desiccant wheel on the performance of desiccant cooling cycles for greenhouse thermally insulated. Heat Mass Transf. 54, 3427–3443 (2018)

    Article  Google Scholar 

  37. Zerouali, M., Labed, N.: Etude de faisabilité d’une installation de rafraichissement solaire par dessiccation avec des conditions climatiques algériennes. In: 2eme Congrès de l’Ass. Marocaine de Thermique, Casablanca (2012)

  38. Vitte, T., Brau, J., Chatagnon, N.: Proposition d’une stratégie de régulation hybride pour le contrôle d’une centrale de desiccant cooling solaire. In: Presented at VIIIémé Colloque Interuniversitaire Franco-Auébécois sur le Thermique des Système, Montréal, (https://hal.archives-ouvertes.fr/hal-00351183/) (2007)

  39. Bourdoukan, P., Wurtz, E., Joubert, P.: Comparison between the conventional and recirculation modes in desiccant cooling cycles and deriving critical efficiencies of components. In: Energy, ECOS 2008 21st International Conference, on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, vol. 35, pp. 1057–1067 (2010)

  40. Abbassi, Y., Baniasadi, E., Ahmadikia, H.: Comparative performance analysis of different solar desiccant dehumidification systems. Energy Build. 150, 37–51 (2017)

    Article  Google Scholar 

  41. Chaudhary, G.Q., Ali, M., Sheikh, N.A., Khushnood, S.: Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling. Appl. Therm. Eng. 140, 696–706 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Zerouali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerouali, M., Labed, N. Sensitivity of air desiccant cooling system to climatic conditions: a comparative study on many systems. Energy Syst 13, 191–213 (2022). https://doi.org/10.1007/s12667-020-00412-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-020-00412-w

Keywords

Navigation