Skip to main content
Log in

Large-scale stochastic power grid islanding operations by line switching and controlled load shedding

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Recently, there has been an increasing concern regarding the security and reliability of power systems due to the onerous consequences of cascading failures. Among many emergency control operations, controlled power grid islanding is a last resort yet powerful method to prevent large-scale blackouts. Islanding operations split the power grid into self-sufficient operational subnetworks and avoid cascading failures by isolating the failed elements of the power system into a non-operational island. In this paper, we consider a two-stage stochastic mixed-integer program to seek the optimal islanding operations under severe contingency states. Line switching and controlled load shedding are the main tools for the islanding operations and load shedding is considered as a measurement to gauge system’s inability to respond to disruption. The number of possible extreme contingencies grows exponentially as the size of the grid increases, and this results in a large-scale mixed-integer program, which is a computationally challenging problem to solve. We present an efficient decomposition method to solve this problem for large-scale power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xu, G., Vittal, V., Meklin, A., Thalman, J.E.: Controlled islanding demonstrations on the WECC system. IEEE Trans. Power Syst. 26(1), 334–343 (2011)

    Article  Google Scholar 

  2. Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., Vittal, V.: Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    Article  Google Scholar 

  3. Wong, P.C., Huang, Zh., Chen, Y., Mackey, P., Jin, Sh.: Visual analytics for power grid contingency analysis. IEEE Comput. Graph. Appl. 34(1), 42–51 (2014)

  4. You, H., Vittal, V., Wang, X.: Slow coherency-based islanding. IEEE Trans. Power Syst. 19(1), 483–491 (2004)

    Article  Google Scholar 

  5. Taylor, C.W., Haner, J.M., Hill, L.A., Mittelstadt, W.A., Cresap, R.L.: A new out-of-step relay with rate of change of apparent resistance augmentation. IEEE Trans. Power Syst. PAS–102(3), 631–639 (1983)

    Article  Google Scholar 

  6. Senroy, N., Heydt, G.T., Vittal, V.: Decision tree assisted controlled islanding. IEEE Trans. Power Syst. 21(4), 1790–1797 (2006)

    Article  Google Scholar 

  7. Yang, B., Vittal, V., Heydt, G.T.: Slow-coherency-based controlled islanding—a demonstration of the approach on the August 14, 2003 Blackout Scenario. IEEE Trans. Power Syst. 21(4), 1840–1847 (2004)

    Article  Google Scholar 

  8. Golari, M., Fan, N., Wang, J.: Two-stage stochastic optimal islanding operations under severe multiple contingencies in power grids. Electr. Power Syst. Res. 114, 68–77 (2014)

    Article  Google Scholar 

  9. Fan, N., Izraelevitz, D., Pan, F., Pardalos, P.M., Wang, J.: A mixed integer programming approach for optimal power grid intentional islanding. Energy Syst. 3, 77–93 (2012)

    Article  Google Scholar 

  10. Pahwa, S., Youssef, M., Schumm, P., Scoglio, C., Schulz, N.: Optimal intentional islanding to enhance the robustness of power grid networks. Physica A 392, 3741–3754 (2013)

    Article  MathSciNet  Google Scholar 

  11. Trodden, P.A., Bukhsh, W.A., Grothey, A., McKinnon, K.I.M.: MILP islanding of power networks by bus splitting. IEEE Power Energy Soc. Gen. Meet. 1(8), 22–26 (2012)

    Google Scholar 

  12. Trodden, P.A., Bukhsh, W.A., Grothey, A., McKinnon, K.I.M.: MILP formulation for controlled islanding of power networks. Int. J. Electr. Power Energy Syst. 45, 501–508 (2013)

    Article  Google Scholar 

  13. Hedman, K.W., O’Neill, R.P., Fisher, E.B., Oren, S.S.: Optimal transmission switching with contingency analysis. IEEE Trans. Power Syst. 24(3), 1577–1586 (2009)

    Article  Google Scholar 

  14. O’Neill, R.P., Hedman, K.W., Krall, E.A., Papavasiliou, A., Oren, S.S.: Economic analysis of the ISOs multi-period \(N-1\) reliable unit commitment and transmission switching problem using duality concepts. Energy Syst. 1(2), 165–195 (2010)

    Article  Google Scholar 

  15. Haner, J.M., Laughlin, T.D., Taylor, C.W.: Experience with the R-Rdot out-of-step relay. IEEE Trans. Power Syst. PWRD–1, 35–39 (1986)

    Article  Google Scholar 

  16. Louveaux, F.V., Van der Vlerk, M.H.: Stochastic programming with simple integer recourse. Math. Program. 61, 301–325 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carøe, C.C., Tind, J.: A cutting-plane approach to mixed \(01\) stochastic integer programs. Eur. J. Oper. Res. 101(2), 306–316 (1997)

    Article  MATH  Google Scholar 

  18. Sen, S., Higle, J.L.: The \(C^3\) and \(D^2\) theorem and a \(D^2\) algorithm for large scale stochastic mixedinteger programming: set convexification. Math. Program. 104(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sherali, H.D., Fraticelli, B.M.P.: A modification of Benders decomposition algorithm for discrete subproblems: an approach for stochastic programs with integer recourse. J. Glob. Optim. 22(1–4), 319–342 (2002)

  20. Sherali, H.D., Zhu, X.: On solving discrete two-stage stochastic programs having mixed-integer first-and second-stage variables. Math. Program. 108(2–3), 597–616 (2006)

  21. Bodur, M., Dash, S., Gunluk, O., Luedtke, J.: Strenghtened Benders cuts for stochastic integer programs with continuous recourse. http://www.optimization-online.org/DB_FILE/2014/03/4263.pdf (2014). Accessed on 11 April 2015

  22. North American Electric Reliability Corporation, Transmission Planning Standards, September 2013. http://www.nerc.com/pa/Stand/Reliability%20Standards/Forms/AllItems.aspx

  23. Report on the grid disturbance on 30th July 2012 and grid disturbance on 31st July 2012, August 8, 2012. http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf. Retrieved 30 June 2016

  24. Eppstein, M., Hines, P.: A random chemistry algorithm for identifying collections of multiple contingencies that initiate cascading failure. IEEE Trans. Power Syst. 27, 1698–1705 (2012)

    Article  Google Scholar 

  25. Fan, N., Xu, H., Pan, F., Pardalos, P.M.: Economic analysis of the \(N-k\) power grid contingency selection and evaluation by graph algorithms and interdiction methods. Energy Syst. 2, 313–324 (2011)

    Article  Google Scholar 

  26. Grothey, A., Bukhsh, W., McKinnon, K.I.M., Trodden, P.A.: Controlled islanding as robust operator response under uncertainty. In: Kovacevic, R.M., et al. (eds.) Handbook of Risk Management in Energy Production and Trading. International Series in Operations Research & Management Science 199. Springer Science+Business Media, New York (2013)

    Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, London (1979)

    MATH  Google Scholar 

  28. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  29. IEEE reliability test data [online]. http://www.ee.washington.edu/research/pstca/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Fan.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

There are some quadratic and cubic terms in the constraints (3), (4a), and (4g) that need to be linearized. First, we replace (4a) by linear constraints (13a) and (13b).

$$\begin{aligned}&f_e^{(c)} - B_e(\theta _{i_e}^{(c)}-\theta _{j_e}^{(c)}) + F_ez_e^{(c)} \le F_e (1+d_e^{(c)} + d_{i_e}^{(c)} + d_{j_e}^{(c)}),\quad \forall e \end{aligned}$$
(13a)
$$\begin{aligned} -&f_e^{(c)} + B_e(\theta _{i_e}^{(c)}-\theta _{j_e}^{(c)}) + F_ez_e^{(c)} \le F_e (1+d_e^{(c)} + d_{i_e}^{(c)} + d_{j_e}^{(c)}),\quad \forall e \end{aligned}$$
(13b)

In order to linearize (3), define

$$\begin{aligned} u_{e,k}^{(c) l}&= (1- u_k^{(c)}) x_{i_ek},\\ u_{e,k'}^{(c) r}&= (1- u_{k'}^{(c)}) x_{j_ek'},\\ \bar{u}_{e,k,k'}^{(c) l, r}&= u_{e,k}^{(c) l} u_{e,k'}^{(c) r}. \end{aligned}$$

Then one can rewrite (3) as

$$\begin{aligned}&z_e^{(c)}=\sum _k \sum _{k'} \bar{u}_{e,k,k'}^{(c) l, r}. \end{aligned}$$

Similarly, to linearize (4g) we introduce following variables

$$\begin{aligned}&y_{ik}^{(c)} = x_{ik}(1 - u_k^{(c)})\\&v_{ik}^{(c)} = s_iy_{ik}^{(c)}. \end{aligned}$$

Then (4g) can be re-written as

$$\begin{aligned}&\sum _k \sum _{i\in V}v_{ik}^{(c)} \le \epsilon ^{(c)} \sum _k \sum _{i\in V}D_i y_{ik}^{(c)}. \end{aligned}$$

Using above realization, linear programming formulation of subproblem corresponding to decision x at contingency state c is presented as follows.

$$\begin{aligned} \begin{array}{lll} &{}Q(x,c)=\min _{f,p,s,u,z}\ \sum _{i\in V}C_i s_i^{(c)} \\ &{}\quad \quad s.t.~~ f_e^{(c)} - B_e(\theta _{i_e}^{(c)}-\theta _{j_e}^{(c)}) + F_ez_e^{(c)} \le F_e (1+d_e^{(c)} + d_{i_e}^{(c)} + d_{j_e}^{(c)}), ~\forall e ~~~~~~~~ &{}\mu _e^{(c) +} \\ &{}\quad \quad \quad -f_e^{(c)} + B_e(\theta _{i_e}^{(c)}-\theta _{j_e}^{(c)}) + F_ez_e^{(c)} \le F_e (1+d_e^{(c)} + d_{i_e}^{(c)} + d_{j_e}^{(c)}), ~\forall e ~~~~~~~~ &{}\mu _e^{(c) -}\\ &{}\quad \quad \quad \quad f_e^{(c)} -F_e z_e^{(c)}(1-d_e^{(c)})(1-d_{i_e}^{(c)})(1-d_{j_e}^{(c)}) \le 0, ~\forall e ~~~~~~~~~~~~~~~~~~~~~~~~ &{}\nu _e^{(c) +} \\ &{}\quad \quad \quad -f_e^{(c)} -F_e z_e^{(c)}(1-d_e^{(c)})(1-d_{i_e}^{(c)})(1-d_{j_e}^{(c)}) \le 0, ~\forall e ~~~~~~~~~~~~~~~~~~~~~~~~ &{}\nu _e^{(c) -} \\ &{}\quad \quad \quad \sum \limits _{g: i_g=i}p_g^{(c)}+\sum \limits _{e: j_e=i}f_e^{(c)} - \sum \limits _{e:i_e=i}f_e^{(c)} + s_i^{(c)} = D_i, \forall i ~~~~~~~~~~~~~~~~~~~~~~~ &{}\phi _i^{(c)} \\ &{}\quad \quad \quad 0\le p_g^{(c)}\le \overline{P_g}(1-d_{i_g}^{(c)})(1-d_g^{(c)}),~ \forall g ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\tau _g^{(c)}\\ &{}\quad \quad \quad 0\le s_i^{(c)}\le D_i,~ \forall i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\kappa _i^{(c)}\\ &{}\quad \quad \quad z_e^{(c)} - \sum \limits _k \sum \limits _{k'} \bar{u}_{e,k,k'}^{(c) l, r} = 0, ~ \forall e ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\gamma _e^{(c)}\\ &{}\quad \quad \quad u_{e,k}^{(c) l} + u_k^{(c)} \le 1, ~\forall e,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\omega _{1,e,k}^{(c)}\\ &{}\quad \quad \quad u_{e,k}^{(c) l} \le x_{i_ek}, ~\forall e,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\omega _{2,e,k}^{(c)}\\ &{}\quad \quad \quad u_{e,k}^{(c) l} + u_k^{(c)} \ge x_{i_ek}, ~\forall e,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\omega _{3,e,k}^{(c)}\\ &{}\quad \quad \quad u_{e,k'}^{(c) r} + u_{k'}^{(c)} \le 1, ~\forall e,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\beta _{1,e,k'}^{(c)}\\ &{}\quad \quad \quad u_{e,k'}^{(c) r} \le x_{j_e{k'}}, ~\forall e,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\beta _{2,e,k'}^{(c)}\\ &{}\quad \quad \quad u_{e,k'}^{(c) r} + u_{k'}^{(c)} \ge x_{j_ek'}, ~\forall e,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\beta _{3,e,k'}^{(c)}\\ &{}\quad \quad \quad \bar{u}_{e,k,k'}^{(c) l, r} - u_{e,k}^{(c) l} \le 0, ~\forall e,k,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\zeta _{1,e,k,k'}^{(c)}\\ &{}\quad \quad \quad \bar{u}_{e,k,k'}^{(c) l, r} - u_{e,k'}^{(c) r} \le 0, ~\forall e,k,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\zeta _{2,e,k,k'}^{(c)}\\ &{}\quad \quad \quad u_{e,k}^{(c) l} + u_{e,k'}^{(c) r} -\bar{u}_{e,k,k'}^{(c) l, r} \le 1, ~\forall e,k,k' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\zeta _{3,e,k,k'}^{(c)}\\ &{}\quad \quad \quad \sum \limits _k \sum \limits _{i\in V} v_{ik}^{(c)} - \epsilon ^{(c)} \sum \limits _k \sum \limits _{i\in V} D_i y_{ik}^{(c)} \le 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\chi ^{(c)}\\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} &{}\quad \quad \quad y_{ik}^{(c)} \le x_{ik}, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\sigma _{1,i,k}^{(c)}\\ &{}\quad \quad \quad y_{ik}^{(c)} + u_k^{(c)}\le 1, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\sigma _{2,i,k}^{(c)}\\ &{}\quad \quad \quad y_{ik}^{(c)} + u_k^{(c)}\ge x_{ik}, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\sigma _{3,i,k}^{(c)}\\ &{}\quad \quad \quad v_{ik}^{(c)} - D_i y_{ik}^{(c)} \le 0, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\rho _{1,i,k}^{(c)}\\ &{}\quad \quad \quad v_{ik}^{(c)} - s_i^{(c)} \le 0, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\rho _{2,i,k}^{(c)}\\ &{}\quad \quad \quad s_i^{(c)} - v_{ik}^{(c)} + D_i y_{ik}^{(c)} \le D_i, ~\forall i,k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\rho _{3,i,k}^{(c)}\\ &{}\quad \quad \quad u_k^{(c)}d_e^{(c)} \le x_{i_e k} + x_{j_e k},\ \forall e,k~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\psi _{e,k}^{(c)}\\ &{}\quad \quad \quad u_k^{(c)}d_i^{(c)} \le x_{ik},\ \forall i,k~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\lambda _{i,k}^{(c)}\\ &{}\quad \quad \quad u_k^{(c)}d_{g}^{(c)} \le x_{i_g k},\ \forall g,k~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\delta _{g,k}^{(c)}\\ &{}\quad \quad \quad \sum \limits _{k=1}^K u_k^{(c)}=1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &{}\eta ^{(c)} \end{array} \end{aligned}$$

The Greek letters on the right of each constraint show the corresponding dual variable. Therefore, the dual can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golari, M., Fan, N. & Wang, J. Large-scale stochastic power grid islanding operations by line switching and controlled load shedding. Energy Syst 8, 601–621 (2017). https://doi.org/10.1007/s12667-016-0215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0215-7

Keywords

Navigation