Skip to main content
Log in

On the Solute Concentration and Corrosion Susceptibility of Mg-xMn-4.0Gd Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper, the Fe/Si reduction efficiency, Gd/Mn alloying efficiency, and corrosion susceptibility of the Mg-xMn-4.0Gd alloy were investigated. The results reveal that adding Mn gives a more prominent Fe removal effect under the conventional smelting processes. Neither the amount of Gd addition nor excessive Mn addition is sufficient for the continued strengthening of the Fe removal effect. The alloying efficiency of Mn increased and then decreased as a result of adding Mn alone to mixtures of Mn and Gd elements, while the alloying efficiency of Gd elements gradually diminished. An appropriate amount of Mn addition is beneficial for efficiently improving the corrosion resistance of the alloy. The extruded Mg-0.8Mn-4.0Gd alloy has more outstanding corrosion resistance, with a CRWeighet Loss of 4.48 ± 0.33 mg/(cm2·d) and CRHydrogen Evolution of 2.01 ± 0.31 ml/(cm2·d). The corrosion susceptibility of the extruded Mg-xMn-4.0Gd alloy mainly hinges on the grain size, Gd solid solubility, and texture intensity of basal plane I(0002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cho D H, Avey T, Nam K H, Dean D, and Luo A A, Acta Biomater 150 (2022) 442.

    Article  CAS  PubMed  Google Scholar 

  2. Sun L X, Bai J, and Xue F, J Mater Res Technol 21 (2022) 3961.

    Article  CAS  Google Scholar 

  3. Liu M, Uggowitzer P J, Nagasekhar A V, Schmutz P, Easton M, Song G L, and Atrens A, Corros Sci 51 (2009) 602.

    Article  CAS  Google Scholar 

  4. Gu D D, Peng J, Wang J W, Liu Z T, and Pan F S, Acta Metall Sin (Engl Lett) 34 (2021) 1.

    Article  CAS  Google Scholar 

  5. Kim J I, Nguyen H N, You B S, and Kim Y M, Scr Mater 162 (2019) 355.

    Article  CAS  Google Scholar 

  6. Jiang S Y, Yuan Y, Wang J, Chen T, Wu L, Chen X H, Jiang B, Tang A T, and Pan F S, Calphad 79 (2022) 102503.

    Article  CAS  Google Scholar 

  7. Gu D D, Wang J W, Chen Y B, and Peng J, T Nonferr Metal Soc 30 (2020) 2941.

    Article  CAS  Google Scholar 

  8. Sun Y H, Wang R C, Peng C Q, and Wang X F, T Nonferr Metal Soc 32 (2022) 2494.

    Article  CAS  Google Scholar 

  9. Li L H, Bao J X, Qiao M L, Tian J, Yang Y Q, Sha J C, and Zhang Z Q, Mat Sci Eng A 872 (2023) 144979.

    Article  CAS  Google Scholar 

  10. Yuan X C, Liu M N, Wei K W, Li F Z, Li X Y, and Zeng X Y, Mat Sci Eng A 850 (2022) 143572.

    Article  CAS  Google Scholar 

  11. Guan F, Jiang W M, Zhang Z, Wang J L, and Li G Y, Mater Charact 200 (2023) 112898.

    Article  CAS  Google Scholar 

  12. Gu D D, Peng J, Sun S, and Pan F S, J Mater Res Technol 20 (2022) 2859.

    Article  CAS  Google Scholar 

  13. Tong X, You G Q, Wang Y C, Wu H, Liu W L, Li P Q, and Guo W, Mater Sci Eng A 731 (2018) 44.

    Article  CAS  Google Scholar 

  14. Guan K, Meng F Z, Qin P F, Yang Q, Zhang D D, Li B S, Sun W, Lv S H, Huang Y D, Hort N, and Meng J, J Mater Sci Technol 35 (2019) 1368.

    Article  CAS  Google Scholar 

  15. Wang Q, Master Thesis, Chongqing University, Chongqing, China (2016)

  16. Atrens A, Johnston S, Shi Z M, and Dargusch M S, Scr Mater 154 (2018) 92.

    Article  CAS  Google Scholar 

  17. Liu M, and Song G L, Corros Sci 77 (2013) 143.

    Article  CAS  Google Scholar 

  18. Aung N N, and Zhou W, Corros Sci 52 (2010) 589.

    Article  CAS  Google Scholar 

  19. Xin R L, Li B, Li L, and Liu Q, Mater Design 32 (2011) 4548.

    Article  CAS  Google Scholar 

  20. Yang L, Zhou X R, Curioni M, Pawar S, Liu H, Fan Z Y, Scamans G, and Thompson G, J Electrochem Soc 162 (2015) C362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFB3701100), Scientific research project of Jiangxi Provincial Department of Education (GJJ211038), Jiangxi Students’ Platform for innovation and entrepreneurship training program (S202210419009), and Doctoral research project of Jinggangshan University (JZB2110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-dong Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Dd., Wu, Wx., Xie, Sk. et al. On the Solute Concentration and Corrosion Susceptibility of Mg-xMn-4.0Gd Alloy. Trans Indian Inst Met 77, 627–636 (2024). https://doi.org/10.1007/s12666-023-03149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03149-z

Keywords

Navigation