Skip to main content

Advertisement

Log in

Investigation of Crystallographic Orientation and Mechanical Behaviour in Laser-Welded Stainless Steel 316L Additive Components

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The main factor limiting the adoption of selective laser melting (SLM)-based additive manufacturing is the smaller build size where mechanical joining methods are inevitable. Besides, there are no standard techniques to rework the defective SLM parts. There are limited test data to delineate the rework ability of defective SLM parts by laser welding route. Based on these facts, weldability studies were performed in the SLM-built stainless steel 316L samples, and the soundness of the weld was evaluated. Results of microstructural characterization revealed that the weld fusion zone was primarily characterized with a mixture of coarser cellular dendrite, columnar dendrite and equiaxed morphologies. Furthermore, crystallographic orientation analysis showed the evolution of random texture across the fusion zone, while the heat-affected zone (HAZ) towards the base metal was observed with a dominant < 001 > texture. Tensile testing revealed that the onset of fracture across the HAZ could be ascribed to the evolution of low Taylor factor grains and a high fraction of low-angle grain boundaries. However, the laser-welded SLM sample exhibited superior tensile strength and hardness of 596 MPa and 271 HV. The findings of this study could open up novel avenues for reworking a wide range of defective SLM components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.K. Gokuldoss, S. Kolla, J. Eckert, Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines, Materials (Basel). 10 (2017) 672. https://doi.org/https://doi.org/10.3390/ma10060672.

    Article  CAS  Google Scholar 

  2. D. Srinivasan, M. Meignanamoorthy, M. Ravichandran, V. Mohanavel, S. V. Alagarsamy, C. Chanakyan, S. Sakthivelu, A. Karthick, T.R. Prabhu, S. Rajkumar, 3D Printing Manufacturing Techniques, Materials, and Applications: An Overview, Adv Mater Sci Eng. 2021 (2021) 1–10. https://doi.org/https://doi.org/10.1155/2021/5756563.

    Article  CAS  Google Scholar 

  3. N. Yu, Y. Yang, R. Jourdain, M. Gourma, A. Bennett, F. Fang, Design and optimization of plasma jet nozzles based on computational fluid dynamics, Int J Adv Manuf Technol. 108 (2020) 2559–2568. https://doi.org/https://doi.org/10.1007/s00170-020-05568-4.

    Article  Google Scholar 

  4. S. Chandra, X. Tan, R.L. Narayan, M. Descoins, D. Mangelinck, S.B. Tor, E. Liu, G. Seet, Nanometer-scale precipitations in a selective electron beam melted nickel-based superalloy, Scr Mater. 194 (2021) 113661. https://doi.org/https://doi.org/10.1016/j.scriptamat.2020.113661.

    Article  CAS  Google Scholar 

  5. K.S.N.S. Idury, R.L. Narayan, A Critical Appraisal of the Role of Oxygen in Phase Evolution and Mechanical Properties of Additively Manufactured Bulk Metallic Glasses, Trans Indian Inst Met. (2022). https://doi.org/https://doi.org/10.1007/s12666-022-02683-6.

    Article  Google Scholar 

  6. V. Chakkravarthy, S.P. Jose, M. Lakshmanan, P. Manojkumar, R. Lakshmi Narayan, M. Kumaran, Additive manufacturing of novel Ti-30Nb-2Zr biomimetic scaffolds for successful limb salvage, Mater Today Proc. (2022). https://doi.org/https://doi.org/10.1016/j.matpr.2022.05.469.

    Article  Google Scholar 

  7. R. Melentiev, N. Yu, G. Lubineau, Polymer metallization via cold spray additive manufacturing: A review of process control, coating qualities, and prospective applications, Addit Manuf. 48 (2021) 102459. https://doi.org/https://doi.org/10.1016/j.addma.2021.102459.

    Article  CAS  Google Scholar 

  8. P.K. Shanmuganathan, D.B. Purushothaman, M. Ponnusamy, Effect of High Laser Energy Density on Selective Laser Melted 316L Stainless Steel: Analysis on Metallurgical and Mechanical Properties and Comparison with Wrought 316L Stainless Steel, 3D Print Addit Manuf. (2021). https://doi.org/https://doi.org/10.1089/3dp.2021.0061.

    Article  Google Scholar 

  9. C.D. Boley, S.A. Khairallah, A.M. Rubenchik, Calculation of laser absorption by metal powders in additive manufacturing, Addit Manuf Handb Prod Dev Def Ind. 54 (2017) 507–517. https://doi.org/https://doi.org/10.1201/9781315119106.

    Article  Google Scholar 

  10. S. Gowtham, T.C.A. Kumar, N.S.M.P.L. Devi, M.K. Chakravarthi, S. Pradeep Kumar, R. Karthik, H. Anandaram, N.M. Kumar, K. Ramaswamy, A Survey on Additively Manufactured Nanocomposite Biomaterial for Orthopaedic Applications, J Nanomater. 2022 (2022) 1–7. https://doi.org/https://doi.org/10.1155/2022/8998451.

    Article  CAS  Google Scholar 

  11. Y. Wen, B. Zhang, R.L. Narayan, P. Wang, X. Song, H. Zhao, U. Ramamurty, X. Qu, Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718, Addit Manuf. 40 (2021) 101926. https://doi.org/https://doi.org/10.1016/j.addma.2021.101926.

    Article  CAS  Google Scholar 

  12. Y. Li, K. Chen, R.L. Narayan, U. Ramamurty, Y. Wang, J. Long, N. Tamura, X. Zhou, Multi-scale microstructural investigation of a laser 3D printed Ni-based superalloy, Addit Manuf. 34 (2020) 101220. https://doi.org/https://doi.org/10.1016/j.addma.2020.101220.

    Article  CAS  Google Scholar 

  13. S.R. Narasimharaju, W. Zeng, T.L. See, Z. Zhu, P. Scott, X. Jiang, S. Lou, A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends, J Manuf Process. 75 (2022) 375–414. https://doi.org/https://doi.org/10.1016/j.jmapro.2021.12.033.

    Article  Google Scholar 

  14. M. Yakout, M.A. Elbestawi, S.C. Veldhuis, Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L, J Mater Process Technol. 266 (2019) 397–420. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2018.11.006.

    Article  CAS  Google Scholar 

  15. W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L, J Alloys Compd. 740 (2018) 910–925. https://doi.org/https://doi.org/10.1016/j.jallcom.2018.01.098.

    Article  CAS  Google Scholar 

  16. J.J. Marattukalam, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjörvarsson, M. Sahlberg, The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS, Mater Des. 193 (2020). https://doi.org/https://doi.org/10.1016/j.matdes.2020.108852.

    Article  Google Scholar 

  17. V. Chakkravarthy, M. Lakshmanan, P. Manojkumar, R. Prabhakaran, Crystallographic orientation and wear characteristics of TiN, SiC, Nb embedded Al7075 composite, Mater Lett. 306 (2022) 130936. https://doi.org/https://doi.org/10.1016/j.matlet.2021.130936.

    Article  CAS  Google Scholar 

  18. M. Lakshmanan, J. SelwinRajadurai, V. Chakkravarthy, S. Rajakarunakaran, Wear and EBSD studies on (SiC/NiTi) reinforced Al7075 composite, Mater Lett. 272 (2020) 127879. https://doi.org/https://doi.org/10.1016/j.matlet.2020.127879.

    Article  CAS  Google Scholar 

  19. K.S.N.S. Idury, V. Chakkravarthy, R.L. Narayan, Mechanical Behavior of Laser Powder Bed Fusion Processed Inconel 625 Alloy, Trans Indian Natl Acad Eng. 6 (2021) 975–990. https://doi.org/https://doi.org/10.1007/s41403-021-00269-0.

    Article  Google Scholar 

  20. V. Chakkravarthy, S. Jerome, Printability of multiwalled SS 316L by wire arc additive manufacturing route with tunable texture, Mater Lett. 260 (2020) 126981. https://doi.org/https://doi.org/10.1016/j.matlet.2019.126981.

    Article  CAS  Google Scholar 

  21. L. Tian, R.L. Narayan, K. Zhou, R. Babicheva, U. Ramamurty, Z. wei Shan, A real-time TEM study of the deformation mechanisms in β-Ti reinforced bulk metallic glass composites, Mater Sci Eng A. 818 (2021) 141427. https://doi.org/https://doi.org/10.1016/j.msea.2021.141427.

    Article  CAS  Google Scholar 

  22. M. Shehata, T.M. Hatem, W.A. Samad, Experimental Study of Build Orientation in Direct Metal Laser Sintering of 17-4PH Stainless Steel, 3D Print Addit Manuf. 6 (2019) 227–233. https://doi.org/https://doi.org/10.1089/3dp.2017.0106.

    Article  Google Scholar 

  23. P. Marimuthu, P. Dinesh Babu, T. Ram Prabhu, Laser Welding of ZE41 Mg Alloy: Experimental Investigations on the Effect of Parameters and Nondestructive Testing, Trans Indian Inst Met. 73 (2020) 1587–1593. https://doi.org/https://doi.org/10.1007/s12666-020-01938-4.

    Article  CAS  Google Scholar 

  24. G. Muthukumaran, P.D. Babu, Analysis of Residual Stress Distribution and Corrosion in Laser Surface Hardened Low Alloy Steel with a Flat Top-Hat Laser Beam, Using a High-Power Diode Laser, Arab J Sci Eng. 47 (2022) 8785–8803. https://doi.org/https://doi.org/10.1007/s13369-021-06350-8.

    Article  CAS  Google Scholar 

  25. H. Yu, F. Li, J. Yang, J. Shao, Z. Wang, X. Zeng, Investigation on laser welding of selective laser melted Ti-6Al-4V parts: Weldability, microstructure and mechanical properties, Mater Sci Eng A. 712 (2018) 20–27. https://doi.org/https://doi.org/10.1016/j.msea.2017.11.086.

    Article  CAS  Google Scholar 

  26. M. Ragavendran, N. Chandrasekhar, R. Ravikumar, R. Saxena, M. Vasudevan, A.K. Bhaduri, Optimization of hybrid laser – TIG welding of 316LN steel using response surface methodology (RSM), Opt Lasers Eng. 94 (2017) 27–36. https://doi.org/https://doi.org/10.1016/j.optlaseng.2017.02.015.

    Article  Google Scholar 

  27. G. Muthukumaran, P.D. Babu, Metallurgical characterization of laser hardened, mechanically textured 2.5 Ni-Cr-Mo low alloy steel and optimization using RSM, Opt Laser Technol. 141 (2021) 107126. https://doi.org/https://doi.org/10.1016/j.optlastec.2021.107126.

    Article  CAS  Google Scholar 

  28. S. Rakesh, S. Raghuraman, R. Venkatraman, Experimental Investigation on the Effect of Laser Welding Parameters for P91 Steel Welding with Varying Shielding Gas Using Box–Behnken Design Methodology, Arab J Sci Eng. (2022). https://doi.org/https://doi.org/10.1007/s13369-022-06979-z.

    Article  Google Scholar 

  29. M. Mokhtari, P. Pommier, Y. Balcaen, J. Alexis, Laser welding of aisi 316l stainless steel produced by additive manufacturing or by conventional processes, J Manuf Mater Process. 5 (2021) 136. https://doi.org/https://doi.org/10.3390/jmmp5040136.

    Article  CAS  Google Scholar 

  30. N. Sriraman, P.B. Singh, S. Kumaran, Microstructure, Mechanical and Bio-corrosion Behaviour of Thermomechanically Processed Mg–4Li–1Ca Alloy, Trans Indian Inst Met. 72 (2019) 1635–1638. https://doi.org/https://doi.org/10.1007/s12666-019-01599-y.

    Article  CAS  Google Scholar 

  31. M. Rashid, R.L. Narayan, D.L. Zhang, W.Z. Han, A Comparative Study of Microstructures and Mechanical Behavior of Laser Metal Deposited and Electron Beam Melted Ti-6Al-4V, J Mater Eng Perform. 31 (2022) 542–551. https://doi.org/https://doi.org/10.1007/s11665-021-06197-y.

    Article  CAS  Google Scholar 

  32. L. Schmidt, K. Schricker, J.P. Bergmann, C. Junger, Effect of local gas flow in full penetration laser beam welding with highwelding speeds, Appl Sci. 10 (2020). https://doi.org/https://doi.org/10.3390/app10051867.

    Article  CAS  Google Scholar 

  33. M. Lakshmanan, J. Selwin Rajadurai, V. Chakkravarthy, S. Rajakarunakaran, Tribological investigations on h-BN/NiTi inoculated Al7075 composite developed via ultrasonic aided squeeze casting, Mater Lett. 285 (2021) 129113. https://doi.org/https://doi.org/10.1016/j.matlet.2020.129113.

    Article  CAS  Google Scholar 

  34. V. Chakkravarthy, S. Jerome, Fabrication of preferentially oriented Al4043 alloy and its wear anisotropy, Mater Lett. 280 (2020) 128578. https://doi.org/https://doi.org/10.1016/j.matlet.2020.128578.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the SASTRA Deemed to be University, SASTRA TBI (FIRST) and Shanmugha Precision Forging (SPF), Thanjavur, for their help and technical assistance in manufacturing the SLMed specimens. The authors acknowledge the use of the welding facility at MAGOD Laser Machining Pvt. Ltd., Jigani. The National Institute of Technology, Tiruchirappalli (NITT) is appreciated for the FE-SEM and EDS analysis. The authors also thank the Indian Institute of Technology, Delhi (IITD) for providing characterization facility supported by the Start-up research grant (No. SRG/2020/000095) of Science and Engineering Research Board, DST, GoI.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dinesh Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2251 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.P., Chakkravarthy, V., Mahalingam, A. et al. Investigation of Crystallographic Orientation and Mechanical Behaviour in Laser-Welded Stainless Steel 316L Additive Components. Trans Indian Inst Met 76, 527–535 (2023). https://doi.org/10.1007/s12666-022-02756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02756-6

Keywords

Navigation