Skip to main content
Log in

Preparation of High-Purity Mesoporous Alumina Material with Industrial Al(OH)3 via Ion Exchange

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

High-purity mesoporous alumina materials were prepared in this study via deep sodium removal with strong acidic cation exchange resin, a recyclable functional material that has strong dissociation ability in acid and alkaline solution for ion exchange. The effects of various conditions on the mass fraction of impurities, surface physical properties, and crystal phase of the products were investigated by XRF, XRD, SEM, EDS, TEM, BET, BJH, and NLDFT methods. When sodium aluminate solution with an initial concentration of 60 g/L was reacted by ion exchange with the resin for 60 min, the seed decomposition time was 48 h, the heating rate was 10 °C/min, and the holding temperature was 500 °C. These conditions produced mass fractions of SiO2, Fe2O3, and Na2O impurities in the alumina material of 0.0045%, 0.0038%, and 0.0166%, respectively. The total impurity removal rate was as high as 99.099%. The specific surface area, pore volume, and pore diameter were 229.4 m2/g, 0.28 cm3/g, and 4.0 nm, respectively, indicating that high-purity mesoporous alumina has high porosity and can be wielded as an adsorbent and catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dai P Z, Li Q C, Pan Q C, and Jim B, Modern Chem Ind 31 (2011) 430.

    Google Scholar 

  2. Breysse M, Afanasiev P, Geantet C, and Vrinat M, Catal Today 86 (2003) 5.

    Article  CAS  Google Scholar 

  3. Mohan D, and Pittman C U, J Hazard Mater 142 (2007) 1.

    Article  CAS  Google Scholar 

  4. Lu X, Xia G, Lemmon J P, and Yang Z, J Power Sources 195 (2010) 2431.

    Article  CAS  Google Scholar 

  5. Favaro L, Boumaza A, Roy P, Lédion J, Sattonnay G, Brubach J B, Huntz A M, and Tétot R, J Solid State Chem 183 (2010) 901.

    Article  CAS  Google Scholar 

  6. Nguyen T, Tang D, D’Acierno F, Michal C A, and MacLachlan M J, Chem Mater 30 (2018) 1602.

    Article  CAS  Google Scholar 

  7. Chen X, Zheng X, Lin W, Chen D, Zheng Y, and Jiang L, Powder Technol 338 (2018) 869.

    Article  CAS  Google Scholar 

  8. Busca G, Catal Today 226 (2014) 2.

    Article  CAS  Google Scholar 

  9. Bai P, Su F, Wu P, Wang L, Lee F Y, Lv L, Yan Z F, and Zhao X S, Langmuir 23 (2007) 4599.

    Article  CAS  Google Scholar 

  10. Maruoka H, Tomita A, Zheng L, and Kimura T, Langmuir 34 (2018) 13781.

    Article  CAS  Google Scholar 

  11. Liu S, Liang X, Zhang J, and Chen B, Catal Sci Technol 7 (2017) 466.

    Article  CAS  Google Scholar 

  12. Xiu H W, Ni H H, Cao Y, Li G, Gao H, and Yang J L, Appl Mech Mater 164 (2012) 21.

    Article  Google Scholar 

  13. Li Q, Lin C, Wang Z, and Zhang H, Contemp Chem Ind 42 (2013) 346.

    CAS  Google Scholar 

  14. Zhang Y, and Liu W, Guangzhou Chem Ind 42 (2014) 20.

    Google Scholar 

  15. Yan G, Chen J, and Jing Y, Diamond Abras Eng 156 (2006) 68.

    Google Scholar 

  16. Guo Q M, Shen Z Q, Ling F X, Yang W Y, Guo C Y and Ji H H, Contemp Chem Ind 44 (2015) 951.

    CAS  Google Scholar 

  17. Chen Q, Wu X, and Bai Y, China Powder Sci Technol 9 (2003) 16.

    Google Scholar 

  18. Wang Y, Li D H, Yang S F, Zhang Y Y, Nonferrous Met Eng 8 (2018) 33.

    Google Scholar 

  19. Padmaja P, Pillai P K, Warrier K G K, and Padmanabhan M, J Porous Mater 11 (2004) 147.

    Article  CAS  Google Scholar 

  20. Cai W Q, Li H Q, and Zhang Y, Mater Chem Phys 96 (2006) 136.

    Article  CAS  Google Scholar 

  21. Alyassin Y, Sayed E G, Mehta P, Ruparelia K, Arshad M S, Rasekh M, Shepherd J, Kucuk I, Wilson P B, Singh N, and Chang M W, Drug Discover Today 25 (2020) 1513.

    Article  CAS  Google Scholar 

  22. Jones M, Hutchings G J, Willock D J, Scott J, and Taylor S H, J Catal 364 (2018) 102.

    Article  CAS  Google Scholar 

  23. Wang F, Chen P, Li X, and Zhu B, Ceramics Int 45 (2019) 2989.

    Article  CAS  Google Scholar 

  24. Zhang D, Zhou S, Liu Y, Fan X, Zhang M, Zhai J, and Jiang L, ACS Nano 12 (2018) 11169.

    Article  CAS  Google Scholar 

  25. Zheng Y, Zhang K, Liu T T, Liao W H, Zhang C D, and Shao H, Ceramics Int 45 (2019) 175.

    Article  CAS  Google Scholar 

  26. Kumari U, Behera S K, and Meikap B C, J Hazard Mater 365 (2019) 868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, D., Chen, J. et al. Preparation of High-Purity Mesoporous Alumina Material with Industrial Al(OH)3 via Ion Exchange. Trans Indian Inst Met 75, 771–781 (2022). https://doi.org/10.1007/s12666-021-02489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02489-y

Keywords

Navigation