Skip to main content
Log in

A Critical Review on Nickel–Titanium Thin-Film Shape Memory Alloy Fabricated by Magnetron Sputtering and Influence of Process Parameters

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper discussed the fundamentals of NiTi shape memory alloy and its applications in advanced scientific fields. Currently, the world is focusing on miniaturized systems for various industrial and functional applications. The thin-film shape memory NiTi alloy plays a crucial role in MEMS/NEMS industry in fabrication of microdevices. In this article, the NiTi phase diagram along with the shape memory effect and superelasticity has also been explained. Among several types of fabrication techniques for NiTi thin films, magnetron sputtering, which yields a better homogeneous film, has been discussed. Both the operational parameters (target type, Ar pressure, applied power, target–substrate distance, substrate rotation, substrate temperature, plasma stability, deposition rate) and the material’s parameters (deposition pattern, orientation of adatom, film thickness, film stress, crystal structure, grain size, intermetallic formation, oxide formation, phase transformation) have been correlated in this article. The utilization of shape memory behavior in various industrial applications has been discussed here, also the advantages and limitations of SMA have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tzou H S, Lee H J, and Arnold S M, Mech Adv Mater Struct, (2004) p 367, https://doi.org/10.1080/15376490490451552.

  2. Spaggiari A, Castagnetti D, Golinelli N, Dragoni E, and Mammano G S, J Mater Des Appl, (2016) p 734, https://doi.org/10.1177/1464420716673671.

  3. Zhang Z, Demir K G and Gu G X, Int J Smart Nano Mater, (2019) p 205, https://doi.org/10.1080/19475411.2019.1591541.

  4. Kuchin D S, Dilmieva E T, Koshkid'ko Y S, Kamantsev A P, Koledov V V, Mashirov A V, Shavrov V G, Cwik J, Rogacki K, and Khovaylo V V, J Magn Magn Mater, (2019), p 317, https://doi.org/10.1016/j.jmmm.2019.02.087.

  5. Bidhan P, Das S, and Bhattacharyya T K, J Micro/Nanolithogr MEMS MOEMS, (2012) p 1, https://doi.org/10.1117/1.JMM.11.1.013008.

  6. Miyazaki S and Ishida A, Mater Sci Eng A, (1999) p 106, https://doi.org/10.1016/S0921-5093(99)00292-0.

  7. Knick C R, Sharar D J, Wilson A A, Smith G L, Morris C J, and Bruck H A, J Micromech Microeng, (2019) p 29, https://doi.org/10.1088/1361-6439/ab1633

  8. Sabahi N, Chen W, Wang C H, Kruzic J J, and Li X, JOM, (2020) p 1229, https://doi.org/10.1007/s11837-020-04013-x

  9. Pieczyska E, Gadaj S, Nowacki W K, Hoshio K, Makino Y, and Tobushi H, Sci Technol Adv Mater, (2005) p 889, https://doi.org/10.1016/j.stam.2005.07.008

  10. Zhang Y and Xu X, Shap Mem Superelasticity, (2020) p 374, https://doi.org/10.1007/s40830-020-00303-0.

  11. Zhao H, Chang M, Liu X, Gabayno J L, and Chen H T, J Micromech Microeng, (2014), https://doi.org/10.1088/0960-1317/24/9/095012.

  12. Lega P, Koledov V, Orlov A, Kuchin D, Frolov A, Shavrov V, Martynova A, Irzhak A, Shelyakov A, Sampath V, Khovaylo V, and Ari-Gur P, Adv Eng Mater, (2017) p 19, https://doi.org/10.1002/adem.201700154.

  13. Buehler W J and Wang F E, Ocean Eng, (1968) p 105, https://doi.org/10.1016/0029-8018(68)90019-X.

  14. Kurdyumov G V, J Tech Phys, (1948) p 999.

  15. Daniela C and Grandini C, (2019), https://doi.org/10.5772/intechopen.86717.

  16. Lai B K, Hahm G, You L, Shih C L, Kahn H, Phillips S M, and Heuer A H, Mat Res Soc Symp Proc (2001), https://doi.org/10.1557/PROC-657-EE8.3.

  17. Frenzela J, George E P, Dlouhy A, Somsen, Wagner M F X, and Eggeler G, Acta Mater, (2010) p 3444, https://doi.org/10.1016/j.actamat.2010.02.019.

  18. Huang X and Liu Y, Scripta Mater, (2001) p 153, https://doi.org/10.1016/S1359-6462(01)01005-3.

  19. Ruiz-Larrea I, López-Echarri A, Breczewski T, López G A, Lopez-Ferreño I, Nó M L, and San J J M, Metals, (2018) https://doi.org/10.3390/met8040246.

  20. Wan D and Komvopoulos K, J Mater Res, (2005) p 1606, https://doi.org/10.1557/JMR.2005.0209.

  21. Ziolkowski A, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies, Butterworth-Heinemann, (2015).

  22. Martins R M S, Fernandes F M B, Silva R J C, Pereira L, Gordo P R, Maneira M J P, Beckers M, Mücklich A, and Schell N, Appl Phys A, (2006) p 139, https://doi.org/10.1007/s00339-005-3477-9.

  23. Mehrpouya M and Bidsorkhi H C, Micro Nanosyst, (2016) p 79, https://doi.org/10.2174/1876402908666161102151453

  24. Heller L, Vokoun D, Šittner P, and Finckh H, Smart Mater Struct, (2012), https://doi.org/10.1088/0964-1726/21/4/045016.

  25. Feninat F E, Laroche G, Fiset M, and Mantovani D, Adv Eng Mater, (2002) p 91. https://doi.org/10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B.

  26. Kealey C P, Whelan S A, Chun Y J, Soojung C H, Tulloch A W, Mohanchandra K P, Carlo D D, Levi D S, Carman G P, and Rigberg D A, J Biomater, (2010) p 8864, https://doi.org/10.1016/j.biomaterials.2010.08.014.

  27. Stepan L L, Levi D S, and Carman G P, J Biomech Eng, (2005) p 915, https://doi.org/10.1115/1.2049311.

  28. Chen Y, Howe C, Lee Y, Cheon S, Yeo W H and Chun Y, Sci Rep, (2016), https://doi.org/10.1038/srep23698.

  29. Kuchin D S, Lega P V, Orlov A P, and Koledov V V, The smallest and the fastest shape memory alloy actuator for micro- and nanorobotics, Proc MARSS, IEEE, (2017) p 1, https://doi.org/10.1109/MARSS.2017.8001932.

  30. Swain B, Mallick P, Gupta R, Tuan N, Mohapatra S S, and Behera A, J Alloy Compd, (2021).

  31. Hasannaeimi V, Shahrabi T, and Sanjabi S, Surf Coat Technol, (2012) p 10.

  32. Gu H D, Leung K M, Chung C Y, You L, Han X D, Chan K S, and Lai J K L, Thin Solid Films, (1998) p 196.

  33. Lee H J and Ramirez A G, Appl Phys Lett, (2004) p 1146.

  34. Priyadarshini B G, Aich S, and Chakraborty M, Thin Solid Films, (2016) p 733.

  35. Sun H, Luo J, Ren Z, Lu M, and Shi Y, Micro and Nano Lett, (2020) p 670.

  36. Jayachandran S, Mani Prabu S S, Manikandan M, Muralidharan M, Harivishanth M, Akash K, and Palani I A, Vacuum, (2019) p 108826.

  37. Kauffmann-Weiss S, Hahn S, Weigelt C, Schultz L, Wagner M F- X, and Fähler S, Acta Mater, (2017) p 255.

  38. Eswar Raju K S S, Bysakh S, Sumesh M A, Kamat S V, and Mohan S, Mater Sci Eng A, (2008) p 267, https://doi.org/10.1016/j.msea.2007.04.101.

  39. Chu J P, Lai Y W, Lin T N, and Wang S F, Mater Sci Eng A, (2000) p 11, https://doi.org/10.1016/S0921-5093(99)00560-2.

  40. Priyadarshini B G, J Micro Smart Syst, (2019), p 1, https://doi.org/10.1007/s41683-019-00033-1.

  41. Ho K K and Carman G P, Thin Solid Films, (2000) p 18, https://doi.org/10.1016/S0040-6090(00)00947-0.

  42. Abhilash V, Sumesh M A and Mohan S, Smart Mater Struct, (2005) p 323, https://doi.org/10.1088/0964-1726/14/5/023.

  43. Sanjabi S, Sadrnezhaad S K, Yates K A, and Barber Z H, Thin Solid Films, (2005) p 190, https://doi.org/10.1016/j.tsf.2005.06.004.

  44. Abadias G, Chason E, Keckes J, Sebastiani M, Thompson G B, Barthel E, Doll G L, Murray C E, Stoessel C H, and Martinu L, J Vac Sci Technol A, (2018) p1, https://doi.org/10.1116/1.5011790.

  45. Davis C A, Thin Solid Films, (1993) p 30, https://doi.org/10.1016/0040-6090(93)90201-Y.

  46. D'Heurle F M and Harper J M E, Thin Solid Films, (1989) p 81, https://doi.org/10.1016/0040-6090(89)90035-7.

  47. Windischmann H, Crit Rev Solid State Mater Sci, (1992) p 547, https://doi.org/10.1080/10408439208244586

  48. Mohri M and Nili-Ahmadabadi M, Mater Res Exp, (2019), https://doi.org/10.1088/2053-1591/ab0c37.

  49. Janssen G C A M, Thin Solid Films, (2007) p 6654, https://doi.org/10.1016/j.tsf.2007.03.007.

  50. Weng Z, Zhang F, Xu C, and Zhou J, Mater Des, (2020), https://doi.org/10.1016/j.matdes.2019.108350.

  51. Behera A, Aich S, Surf Interface Anal (2015) p 805.

  52. Velmurugan C, Senthilkumar V, Dinesh S, and Arulkirubakaran D, Mater Today Proc, (2018) p 14597, https://doi.org/10.1016/j.matpr.2018.03.051.

  53. Hou H, Hamilton R F, and Horn M W, J Vac Sci Technol, (2016), https://doi.org/10.1116/1.4963375.

  54. Hahn S, Schulze A, Bohme M, Hahn T, and Wagner M F-X, Shap Mem Superelasticity, (2017) p 1, https://doi.org/10.1007/s40830-016-0089-5.

  55. Matsunaga T, Ogawa S K K, Kikuchi T, and Miyazaki S, Acta Mater, (2000) p 1921, https://doi.org/10.1016/S1359-6454(01)00110-0.

  56. Fu Y Q, Zhang S, Wu M J, Huang W M, Du H J, Luo J K, Flewitt A J, and Milne W I, Thin Solid Films, (2006) p 80, https://doi.org/10.1016/j.tsf.2005.12.039.

  57. Wang X and Vlassak J J, Mech Mater, (2015) p 50, https://doi.org/10.1016/j.mechmat.2015.05.001.

  58. König D, Grochla P J S B D, Hamann S, Pfetzing-Micklich J, and Ludwig A, Acta Mater, p 306, https://doi.org/10.1016/j.actamat.2011.09.037.

  59. Hou H, Hamilton R F, and Horn M W, J Vac Sci Technol, (2016), https://doi.org/10.1116/1.4959567.

  60. Kalyan M S, Engineering the stress temperature response of shape memory alloy thin films through the development of composite structures, Ph D Thesis, State University of New York, United States, (2008).

  61. Lee H-J, Huang X, Mohanchandra K P, Carman G P, and Ramirez A G, Scripta Mater, (2009) p 1133, https://doi.org/10.1016/j.scriptamat.2009.02.054.

  62. Liu Y and Huang X, Philos Mag, (2004) p 1919, https://doi.org/10.1080/14786430410004500.

  63. Knick C R, Smith G L, Morris C J, and Bruck H A, Sens Actuator, (2019) p 48, https://doi.org/10.1016/j.sna.2019.03.016.

  64. Karki V, Debnath A K, Kumar S, and Bhattacharya D, Thin Solid Films (2020), https://doi.org/10.1016/j.tsf.2020.137800.

  65. Zarnetta R, König D, Zamponi C, Aghajani A, Frenzel J, Eggeler G, and Ludwig A, Acta Mater, (2009) p 4169, https://doi.org/10.1016/j.actamat.2009.05.014.

  66. Behera A, Rajak D K, Kolahchi R, Scutaru M L, and Pruncu C I, J Mater Res Technol, (2020) p 14582, https://doi.org/10.1016/j.jmrt.2020.10.032.

  67. Jamnig A, Sangiovanni D G, Abadias G, and Sarakinos K, Sci Rep, (2019), https://doi.org/10.1038/s41598-019-43107-8.

  68. Haque S M, Biswas A, Bhattacharya D, Tokas R B, Bhattacharyya D, and Sahoo N K, J Appl Phys, (2013), https://doi.org/10.1063/1.4820932.

  69. Ando T and Fu X-A, Sens Actuator A Phys, (2019) p 340, https://doi.org/10.1016/j.sna.2019.07.009.

  70. Martins R M S, Schell N, Silva R J C, Pereira L, Mahesh K K, and Fernandes F M B, Sens Actuators B, (2007) p 332, https://doi.org/10.1016/j.snb.2006.12.052.

  71. Yi X, Gao W, Meng X, Gao Z, Cai W, and Zhao L, J Alloy Compd, (2017) p 98.

  72. Fu Y, Huang W, Du H, Huang X, Tan J, and Gao X, Surf Coat Technol, (2001) p 107.

  73. Tomozawa M, Okutsu K, Kim H Y, and Miyazaki S, Mater Sci Forum, (2005) p 2037.

  74. Sharma N, Singh G, Hegab H, Mia M, and Batra N K, Mater Res Exp, (2019), https://doi.org/10.1088/2053-1591/ab2d95.

  75. Kabla M, Seiner H, Musilova M, Landa M, and Shilo D, Acta Mater, (2014) p 79.

  76. Kumar A, Singh D, and Kaur D, Surf Coat Technol, (2009) p 1596.

  77. Ainslie K, Knick C, Smith G, Li J, Troxel C, Mehta A, and Kukreja R, Sens Actuators A Phys, (2019) p 133.

  78. Meng X L, Cai W, Lau K T, Zhao L C, and Zhou L M, Intermetallics, (2005) p 197.

  79. Li J, Yi X, Meng X, Qiao S, Cai W, and Zhao L, J Alloy Compd, (2019) p 33.

  80. Lehnert T, Tixier S, Böni P, and Gotthardta R, Mater Sci Eng A, (1999) p 713, https://doi.org/10.1016/S0921-5093(99)00402-5.

  81. Shao A L, Cheng Y, Zhou Y, Li M, Xi T F, Zheng Y F, Wei S C, and Zhang D Y, Surf Coat Technol, (2013) p 257, https://doi.org/10.1016/j.surfcoat.2012.05.129.

  82. Spiga D, Pareschi G, Cotroneo V, Canestrari R, Vernani D, Mirone A, Ferrero C, and Lazzarini L, Opt Eng, (2007), https://doi.org/10.1117/1.2769325.

  83. Padiyath J K, Analysis of sputtered multilayers and design of neutron monochromator, D Sc Thesis, Swiss Federal Institute of Technology, Zurich, (2006).

  84. Reddy B N K, Res Phys, (2020), https://doi.org/10.1016/j.rinp.2020.103075.

  85. Howe R T, J Vac Sci Technol B, (1988), https://doi.org/10.1116/1.584158.

  86. Qian J Y, Hou C W, Li X J, and Jin Z J, Micromachines, (2020), https://doi.org/10.3390/mi11020172.

  87. Chakraborty I, Tang W C, Bame D P, and Tang T K, (2000) p 188, https://doi.org/10.1016/S0924-4247(99)00382-9.

  88. Augustine S, Gu P, Zheng X, Nishida T, and Fan Z H, Microfluid Nanofluid, (2015) p 1385, https://doi.org/10.1007/s10404-015-1653-6.

  89. Ma T, Sun S, Li B, and Chu J, Sens Actuators A Phys, (2019) p 90, https://doi.org/10.1016/j.sna.2019.04.005.

  90. Huang W M, Tan J P, Gao X Y, and Yeo J H, J Micro/Nanolitho MEMS MOEMS, (2003), https://doi.org/10.1117/1.1585063.

  91. Mehrabi H and Aminzahed I, Microsyst Technol, (2020) p 531, https://doi.org/10.1007/s00542-019-04523-y.

  92. Daly M, Pequegnat A, Zhou Y N, and Khan M I, J Intell Mater Syst Struct, (2012), https://doi.org/10.1177/1045389X12444492.

  93. Shelyakov A V, Sitnikov N N, Borodako K A, Koledov V V, Khabibullina I A, and Gratowski S V, J Micro-Bio Robot, (2020) p 43, https://doi.org/10.1007/s12213-020-00126-3.

  94. Barth J, Krevet B, and Kohl M, Smart Mater Struct, (2010), https://doi.org/10.1088/0964-1726/19/9/094004.

  95. Varadan V K and Varadan V V, Smart Mater Struct, (2000), https://doi.org/10.1088/0964-1726/9/6/327.

  96. Fu Y, Du H, Huang W, Zhang S, and Hu M, Sens Actuators A Phys, (2004) p 395, https://doi.org/10.1016/j.sna.2004.02.019.

  97. Velez C, Patel D K, Kim S, Babaei M, Knick C R, Smith G L, and Bergbreiter S, J Microelectromech Syst, (2020) p 867, https://doi.org/10.1109/JMEMS.2020.3019064.

  98. Dang B V, Charlton A J, Li Q, Kim Y C, Taylor R A, Le-Clech P, and Barber T, Sep Purif Technol, (2021), https://doi.org/10.1016/j.seppur.2020.117776.

  99. Gill J J, Chang D T, Momoda L A, Carman G P, Sens Actuators A Phys, (2001) p 148, https://doi.org/10.1016/S0924-4247(01)00646-X.

  100. Han Y L, Li Q S, Li A Q, Leung A Y T, and Lin P H, Earthq Eng Struct Dyn, (2001) p 483, https://doi.org/10.1002/eqe.243.

  101. Johnson D A, Overview of thin film shape memory alloy applications, Cambridge, (2009) p 261, https://doi.org/10.1017/CBO9780511635366.012.

  102. Briena B O, Carroll W M, and Kelly M J, Biomater, (2002) p 1739, https://doi.org/10.1016/S0142-9612(01)00299-X.

  103. Pun D K and Berzins D W, Dent Mater, (2008) p 221, https://doi.org/10.1016/j.dental.2007.05.003.

  104. Bellouard Y, Mater Sci Eng A, (2008) p 582, https://doi.org/10.1016/j.msea.2007.02.166.

  105. Bechtold C, Chluba C, Zamponi C, Quandt E, and Miranda R L, Shap Mem Superelaticity, (2019) p 327, https://doi.org/10.1007/s40830-019-00239-0.

  106. Rasmussen P, Berlia R, Sarkar R, and Rajagopalan J, Mater, (2021), https://doi.org/10.1016/j.mtla.2020.100994.

  107. Vilarinho P, Functional Materials: Properties, Processing and Applications. In: Vilarinho P M, Rosenwaks Y, Kingon A (eds) Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials, NATO Science Series II: Math Phys Chem, (2005) p 3, https://doi.org/10.1007/1-4020-3019-3_1.

  108. Johnson A D, Martynov V, and Gupta V, Micromach Microfabr, (2001), https://doi.org/10.1117/12.442964.

  109. Bechtold C, Miranda R L, and Quandt E, Shap Mem Superelasticity, (2015) p 286, https://doi.org/10.1007/s40830-015-0029-9.

  110. Prakash C, Singh S, and Davim J P, Advanced Manufacturing and Processing Technology, CRC Press, (2020), ISBN 9780367275129

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marupalli, B.C.G., Behera, A. & Aich, S. A Critical Review on Nickel–Titanium Thin-Film Shape Memory Alloy Fabricated by Magnetron Sputtering and Influence of Process Parameters. Trans Indian Inst Met 74, 2521–2540 (2021). https://doi.org/10.1007/s12666-021-02418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02418-z

Keywords

Navigation