Skip to main content

Advertisement

Log in

Sintering Behavior of Nanocrystalline Al6063 Powders Prepared by High-Energy Mechanical Milling

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nanocrystalline Al6063 powders were synthesized by high-energy mechanical milling of gas-atomized powders for 22.5 h. The powders were uniaxially compacted at various compaction pressures ranging 200–1325 MPa and then were sintered at temperatures between 550 and 650 °C for 1 h. The densification and microstructural evolutions during both solid phase sintering and supersolidus liquid phase sintering are studied. Ultrafine-grained (UFG) Al alloy compacts show superior sinterability compared with coarse-grained (CG) compacts due to the higher defect density and larger specific surface area of the mechanically-milled powders. The densification parameter and hardness of both CG and UFG Al6063 compacts enhances as the compaction pressure increases. Nevertheless, applying high compaction pressures has an adverse effect on the sintered density and results in the swelling of compacts. The results point out an optimum sintering temperature at ~600 °C for achieving the highest sintered density and hardness with minimal grain coarsening and slumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Daver E M, Ullrich W J, and Patel K B, Key Eng Mater 29–31 (1989) 401.

    Google Scholar 

  2. Stevenson R W, P/M Lightweight Metals, ASM Handbook, ASM, Metals Park, USA (1984) 9th Ed., p 741.

    Google Scholar 

  3. Schaffer G B, Sercombe T B, and Lumley R N, Mater Chem Phys 67 (2001) 85.

    Article  Google Scholar 

  4. Jha A K, Prasad S V, and Upadhyaya G S, Powder Metall Int 20 (1988) 18.

    Google Scholar 

  5. Martin J M, and Castro F, J Mater Process Technol 143–144 (2003) 814.

    Article  Google Scholar 

  6. Padmavathi C, Upadhyaya A, and Agrawal D, Mater Res Innov 15 (2011) 294.

    Article  Google Scholar 

  7. Lumley R N, Sercombe T B, and Schaffer G B, Metall Mater Trans A 30 (1999) 457.

    Article  Google Scholar 

  8. Kondoh K, Kimura A, and Watanabe R, Powder Metall 44 (2001) 161.

    Article  Google Scholar 

  9. Padmavathi C, Upadhyaya A, and Agrawal D, Mater Chem Phys 130 (2011) 449.

    Article  Google Scholar 

  10. Sercombe T B, and Schaffer G B, Mater Sci Eng A 268 (1999) 32.

    Article  Google Scholar 

  11. Schaffer G B, and Huo S H, Powder Metall 42 (1999) 219.

    Article  Google Scholar 

  12. Schaffer G B, Huo S H, Drennan J, and Auchterlonie G J, Acta Mater 49 (2001) 2671.

    Article  Google Scholar 

  13. German R M, Int J Powder Metall 26 (1990) 35.

    Google Scholar 

  14. Ziani A, and Pelletier S, Int J Powder Metall 35 (1999) 49.

    Google Scholar 

  15. Youseffi M, and Showaiter N, Powder Metall 49 (2006) 240.

    Article  Google Scholar 

  16. Asgharzadeh H, and Simchi A, Powder Metall 52 (2009) 28.

    Article  Google Scholar 

  17. Rodriguez J A, Gallardo J M, and Herrera E J, J Mater Sci 32 (1997) 3535.

    Article  Google Scholar 

  18. Shanmugasundaram T, Heilmaier M, Murty B S, and Subramanya Sarma V, Mater Sci Eng A 527 (2010) 7821.

    Article  Google Scholar 

  19. Choi H J, Shin J H, Min B H, and Bae D H, Compos A 41 (2010) 327.

    Article  Google Scholar 

  20. Asgharzadeh H, Simchi A, and Kim H S, Mater Sci Eng A 528 (2011) 3981.

    Article  Google Scholar 

  21. Ahn B, Mitra R, Lavernia E J, and Nutt S R, J Mater Sci 45 (2010) 4790.

    Article  Google Scholar 

  22. Kumar Rana J, Sivaprahasam D, Seetharama Raju K, and Subramanya Sarma V, Mater Sci Eng A 527 (2009) 292.

    Article  Google Scholar 

  23. Cintas J, Cuevas F G, Montes J M, and Herrera E J, Scr Mater 52 (2005) 341.

    Article  Google Scholar 

  24. Cintas J, Montes J M, Cuevas F G, and Herrera E J, J Mater Sci 40 (2005) 3911.

    Article  Google Scholar 

  25. Abdoli H, Asgharzadeh H, and Salahi E, J Alloys Compd 473 (2009) 116.

    Article  Google Scholar 

  26. Khan A S, Farrokh B, and Takacs L, Mater Sci Eng A 489 (2008) 77.

    Article  Google Scholar 

  27. Fuentes J J, Rodriguez J A, and Herrera E J, J Alloys Compd 484 (2009) 806.

    Article  Google Scholar 

  28. Asgharzadeh H, and McQueen H J, Mater Sci Technol 31 (2015) 1016.

    Article  Google Scholar 

  29. Asgharzadeh H, Simchi A, and Kim H S, Mater Sci Eng A 527 (2010) 4897.

    Article  Google Scholar 

  30. Fogagnolo J B, Robert M H, and Torralba J M, Mater Sci Eng A 426 (2006) 85.

    Article  Google Scholar 

  31. Zebarjad S M, and Sajjadi S A, Mater Des 27 (2006) 684.

    Article  Google Scholar 

  32. Williamson G K, and Hall W H, Acta Metall 1 (1953) 22.

    Article  Google Scholar 

  33. Zhang D L, Prog Mater Sci 49 (2004) 537.

    Article  Google Scholar 

  34. Abdoli H, Ghanbari M, and Baghshahi S, Mater Sci Eng A 528 (2011) 6702.

    Article  Google Scholar 

  35. Qi W H, Phys B 368 (2005) 46.

    Article  Google Scholar 

  36. Panigrahi B B, Mater Sci Eng A 460–461 (2007) 7.

    Article  Google Scholar 

  37. Asgharzadeh H, Simchi A, and Kim H S, Metall Mater Trans A 42 (2011) 816.

    Article  Google Scholar 

  38. Sakoori Oskooie M, Asgharzadeh H, and Kim H S, J Alloys Compd 632 (2015) 540.

    Article  Google Scholar 

  39. Asgharzadeh H, Simchi A, and Kim H S, Mater Charact 75 (2013) 108.

    Article  Google Scholar 

  40. Abdoli H, Farnoush H R, Asgharzadeh H, and Sadrnezhaad S K, Powder Metall 54 (2011) 24.

    Article  Google Scholar 

  41. Asgharzadeh H, Simchi A, and Kim H S, Powder Technol 211 (2011) 215.

    Article  Google Scholar 

  42. German R M, Int J Powder Metall 26 (1990) 23.

    Google Scholar 

Download references

Acknowledgments

The author thanks the University of Tabriz for all of the support provided. The author wish to thank A. Tarasi and P. Pishva for assistance in performing the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Asgharzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, H. Sintering Behavior of Nanocrystalline Al6063 Powders Prepared by High-Energy Mechanical Milling. Trans Indian Inst Met 69, 1359–1368 (2016). https://doi.org/10.1007/s12666-015-0693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0693-7

Keywords

Navigation