Skip to main content

Advertisement

Log in

Modeling landslide susceptibility using an evidential belief function-based multiclass alternating decision tree and logistic model tree

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The primary objective of the present research is to apply and compare the performance of evidential belief function (EBF)-based logistic model trees (LMTs) and multiclass alternate decision trees (LADTrees) in landslide susceptibility mapping in Xiaojin County, China. Firstly, 328 landslides were mapped in the study area. Then, 70% of landslide points were used as training samples randomly, and the remaining 30% were intended for validation samples. For the study area, 12 landslide-related conditioning factors were identified, for instance, plan curvature, profile curvature, elevation, slope angle, slope aspect, normalized difference vegetation index (NDVI), topographic wetness index (TWI), land use, lithology, distance to river soil, and distance to roads. The following procedure was to map landslide susceptible regions through EBF, LADTree and LMT models. Finally, the receiver operating characteristic (ROC) curve was utilized to contrast and test the capacity of the three models. The success rates with the training dataset were 0.880, 0.877 and 0.886 for the EBF, LADTree and LMT models, respectively. In addition, their prediction rates with the validation dataset were 0.846, 0.861 and 0.865, respectively. The results could provide references for disaster management and land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abedini M, Tulabi S (2018) Assessing LNRF, FR, and AHP models in landslide susceptibility mapping index: a comparative study of Nojian watershed in Lorestan province. Iran Environmental Earth Sciences 77:405

    Article  Google Scholar 

  • Aghdam IN, Varzandeh MHM, Pradhan B (2016) Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ Earth Sci 75:553

    Article  Google Scholar 

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci 44:120–135

    Article  Google Scholar 

  • Bai S, Xu Q, Wang J, Zhou P (2013) Pre-conditioning factors and susceptibility assessments of Wenchuan earthquake landslide at the Zhouqu segment of Bailongjiang basin, China. J Geol Soc India 82:575–582

    Article  Google Scholar 

  • Borisovich YG, Gel’man BD, Myshkis AD, Obukhovskii VV (1984) Multivalued mappings. J Sov Math 24:719–791

    Article  Google Scholar 

  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245

    Article  Google Scholar 

  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S (2017) Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 297:69–85

    Article  Google Scholar 

  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu A, Li S (2018) Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Env 78:4397–4419

    Article  Google Scholar 

  • Chen Q, Yan E, Huang S, Wang Q (2020a) Susceptibility evaluation of geological disasters in southern Huanggang based on samples and factor optimization. Bull Geol Sci Technol 39(2):175–185. https://doi.org/10.19509/j.cnki.dzkq.2020.0219

    Article  Google Scholar 

  • Chen W, Zhao X, Tsangaratos P, Shahabi H, Ilia I, Xue W, Wang X, Ahmad BB (2020b) Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J Hydrol 583:124602

    Article  Google Scholar 

  • Chen Y, Chen W, Chandra Pal S, Saha A, Chowdhuri I, Adeli B, Janizadeh S, Dineva A A, Wang X, Mosavi A (2021a) Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto Int. https://doi.org/10.1080/10106049.2021.1920635

    Article  Google Scholar 

  • Chen Y, Chen W, Rahmati O, Falah F, Kulakowski D, Lee S, Rezaie F, Panahi M, Bahmani A, Darabi H, Torabi Haghighi A, Bian H (2021b) Toward the development of deep learning analyses for snow avalanche releases in Mountain regions. Geocarto Int. https://doi.org/10.1080/10106049.2021.1986578

    Article  Google Scholar 

  • Chu L, Wang LJ, Jiang J, Liu X, Sawada K, Zhang J (2019) Comparison of landslide susceptibility maps using random forest and multivariate adaptive regression spline models in combination with catchment map units. Geosci J 23(2):341–355

    Article  Google Scholar 

  • Coelho-Netto AL, Avelar AS, Fernandes MC, Lacerda WA (2007) Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: the role of morphometric subdivision of the terrain. Geomorphology 87:120–131

    Article  Google Scholar 

  • Colkesen I, Kavzoglu T (2016) The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery. Geocarto Int 32:71–86

    Article  Google Scholar 

  • Cui S-H, Pei X-J, Wu H-Y, Huang R-Q (2018) Centrifuge model test of an irrigation-induced loess landslide in the Heifangtai loess platform, Northwest China. J Mt Sci 15:130–143

    Article  Google Scholar 

  • Erener A, Mutlu A, Sebnem Düzgün H (2016) A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Eng Geol 203:45–55

    Article  Google Scholar 

  • ESRI (2014) ArcGIS desktop: release 10.2 Redlands, CA: Environmental Systems Research Institute.

  • Fan Y, Fan X, Fang C (2022) County comprehensive geohazard modelling based on the grid maximum method. Bull Geol Sci Technol 41(2):197–208. https://doi.org/10.19509/j.cnki.dzkq.2022.0046

    Article  Google Scholar 

  • Fioretti G (2001) A mathematical theory of evidence for G.L.S. Shackle Mind Soc 2:77–98

    Article  Google Scholar 

  • Frank E, Hall AM, Witten HI (2016) The weka workbench. Online appendix for "Data mining: practical machine learning tools and techniques", 4th edn. Morgan Kaufmann

  • Guri PK, Champati Ray PK, Patel RC (2015) Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Environ Monitor Assess 187:324

    Article  Google Scholar 

  • Holmes G, Pfahringer B, Kirkby R, Frank E, Hall M (2002) Multiclass alternating decision trees. Springer, Berlin, pp 161–172

    Google Scholar 

  • Hong H, Pradhan B, Jebur MN, Bui DT, Xu C, Akgun A (2015) Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environ Earth Scie 75:40

    Article  Google Scholar 

  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB (2018) Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). CATENA 163:399–413

    Article  Google Scholar 

  • Huang F, Hu S, Yan X, Li M, Wang J, Li W, Guo Z, Fan W (2022a) Landslide susceptibility prediction and identification of its main environmental factors based on machine learning models. Bull Geol Sci Technol 41(2):79–90. https://doi.org/10.19509/j.cnki.dzkq.2021.0087

    Article  Google Scholar 

  • Huang F, Li J, Wang J, Mao D, Sheng M (2022b) Modelling rules of landslide susceptibility prediction considering the suitability of linear environmental factors and different machine learning models. Bull Geol Sci Technol 41(2):44–59. https://doi.org/10.19509/j.cnki.dzkq.2022.0010

    Article  Google Scholar 

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann Assoc Am Geogr 61:217–244

    Article  Google Scholar 

  • Jiroušek R, Shenoy PP (2016) Entropy of belief functions in the dempster-shafer theory: a new perspective. Springer International Publishing, Cham, pp 3–13

    Google Scholar 

  • Jiroušek R, Shenoy PP (2018) A decomposable entropy of belief functions in the Dempster-Shafer theory. Springer International Publishing, Cham, pp 146–154

    Google Scholar 

  • Karabulut EM, Ibrikci T (2014) Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. J Med Syst 38:50

    Article  Google Scholar 

  • Kavzoglu T, Kutlug Sahin E, Colkesen I (2015a) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496

    Article  Google Scholar 

  • Kavzoglu T, Kutlug Sahin E, Colkesen I (2015b) Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng Geol 192:101–112

    Article  Google Scholar 

  • Kuncheva LI, Charles JJ, Miles N, Collins A, Wells B, Lim IS (2008) Automated kerogen classification in microscope images of dispersed Kerogen preparation. Math Geosci 40:639

    Article  Google Scholar 

  • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59:161–205

    Article  Google Scholar 

  • Lee S, Ryu J-H, Won J-S, Park H-J (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Lei X, Chen W, Pham BT (2020) Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis. ISPRS Int J Geo Inf 9:443

    Article  Google Scholar 

  • Lei X, Chen W, Panahi M, Falah F, Rahmati O, Uuemaa E, Kalantari Z, Ferreira CSS, Rezaie F, Tiefenbacher JP, Lee S, Bian H (2021) Urban flood modeling using deep-learning approaches in Seoul, South Korea. J Hydrol 601:126684

    Article  Google Scholar 

  • Li R, Wang N (2019) Landslide susceptibility mapping for the Muchuan county (China): a comparison between bivariate statistical models (WoE, EBF, and IoE) and their ensembles with logistic regression. Symmetry 11:762

    Article  Google Scholar 

  • Li L, Liu R, Pirasteh S, Chen X, He L, Li J (2017) A novel genetic algorithm for optimization of conditioning factors in shallow translational landslides and susceptibility mapping. Arab J Geosci 10:209

    Article  Google Scholar 

  • Li Y, Chen W, Rezaie F, Rahmati O, Davoudi Moghaddam D, Tiefenbacher J, Panahi M, Lee MJ, Kulakowski D, Bui DT, Lee S (2021) Debris flows modeling using anthropogenic and geo-environmental factors: developing hybridized deep-learning algorithms. Geocarto Int. https://doi.org/10.1080/10106049.2021.1912194

    Article  Google Scholar 

  • Lian Z, Xu Y, Fu S, Chen L, Liu L (2020) Landslide susceptibility assessment based on multi-model fusion method: a case study in Wufeng County, Hubei Province. Bull Geol Sci Technol 39(3):78–186. https://doi.org/10.19509/j.cnki.dzkq.2020.0319

    Article  Google Scholar 

  • Nicu IC (2018) Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environ Earth Sci 77:79

    Article  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Quality Quantity 41:673–690

    Article  Google Scholar 

  • Oh H-J, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37:1264–1276

    Article  Google Scholar 

  • Osaragi T (2002) Classification methods for spatial data representation.

  • Park N-W (2011) Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ Earth Sci 62:367–376

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV (2016a) A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech Geol Eng 34:1807–1824

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I, Dholakia MB (2016b) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards 83:97–127

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I, Dholakia MB (2017) Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 149:52–63

    Article  Google Scholar 

  • Polat K, Güneş S (2007) Breast cancer diagnosis using least square support vector machine. Digital Signal Processing 17:694–701

    Article  Google Scholar 

  • Polykretis C, Chalkias C, Ferentinou M (2017) Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ 78:1173–1187

    Article  Google Scholar 

  • Pourghasemi HR, Beheshtirad M (2014) Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed. Iran Geocarto Int 30:662–685

    Article  Google Scholar 

  • Pourghasemi HR, Kerle N (2016) Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province. Iran Environ Earth Sci 75:185

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Iran Nat Hazards 63:965–996

    Article  Google Scholar 

  • Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Abokharima MH, Jebur MN, Tehrany MS (2014) Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards 73:1019–1042

    Article  Google Scholar 

  • Pradhan AMS, Kang H-S, Lee J-S, Kim Y-T (2017) An ensemble landslide hazard model incorporating rainfall threshold for Mt. Umyeon, South Korea. Bull Eng Geol Environ

  • Rahmati O, Naghibi SA, Shahabi H, Bui DT, Pradhan B, Azareh A, Sardooi ER, Samani AN, Melesse AM (2018) Groundwater spring potential modelling: Comprising the capability and robustness of three different modeling approaches. J Hydrol 565:248–261

    Article  Google Scholar 

  • Ran Y, Chen L, Chen J, Wang H, Chen G, Yin J, Shi X, Li C, Xu X (2010) Paleoseismic evidence and repeat time of large earthquakes at three sites along the Longmenshan fault zone. Tectonophysics 491:141–153

    Article  Google Scholar 

  • Ran YK, Chen WS, Xu XW, Chen LC, Wang H, Yang CC, Dong SP (2013) Paleoseismic events and recurrence interval along the Beichuan-Yingxiu fault of Longmenshan fault zone, Yingxiu, Sichuan, China. Tectonophysics 584:81–90

    Article  Google Scholar 

  • Regmi AD, Poudel K (2016) Assessment of landslide susceptibility using GIS-based evidential belief function in Patu Khola watershed, Dang. Nepal Environ Earth Sci 75:1–20

    Google Scholar 

  • Remondo J, González A, De Terán JRD, Cendrero A, Fabbri A, Chung CJF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76:60

    Article  Google Scholar 

  • Sok HK, Ooi MP-L, Kuang YC, Demidenko S (2016) Multivariate alternating decision trees. Pattern Recogn 50:195–209

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2013) Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol 504:69–79

    Article  Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2015) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378

    Article  Google Scholar 

  • Tien Bui D, Shahabi H, Omidvar E, Shirzadi A, Geertsema M, Clague JJ, Khosravi K, Pradhan B, Pham BT, Chapi K, Barati Z, Ahmad BB, Rahmani H, Gróf G, Lee S (2019) Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sens 11:931

    Article  Google Scholar 

  • Toebe M, Cargnelutti Filho A (2013) Multicollinearity in path analysis of maize (Zea mays L.). J Cereal Sci 57:453–462

    Article  Google Scholar 

  • Truong XL, Mitamura M, Kono Y, Raghavan V, Yonezawa G, Truong XQ, Do TH, Bui DT, Lee S (2018) Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl Sci 8:1046

    Article  Google Scholar 

  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. CATENA 118:124–135

    Article  Google Scholar 

  • Van Steen K, Curran D, Kramer J, Molenberghs G, Van Vreckem A, Bottomley A, Sylvester R (2002) Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection. Stat Med 21:3865–3884

    Article  Google Scholar 

  • Wang HB, Li JM, Zhou B, Zhou Y, Yuan ZQ, Chen YP (2017) Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility. Geoenviron Disasters 4:15

    Article  Google Scholar 

  • Wang G, Lei X, Chen W, Shahabi H, Shirzadi AJS (2020) Hybrid computational intelligence methods for landslide susceptibility mapping. Symmetry 12:325

    Article  Google Scholar 

  • Wu Y, Ke Y (2016) Landslide susceptibility zonation using GIS and evidential belief function model. Arab J Geosci 9:697

    Article  Google Scholar 

  • Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S (2016) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environ Earth Sci 75:422

    Article  Google Scholar 

  • Xie Z, Chen G, Meng X, Zhang Y, Qiao L, Tan L (2017) A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ Earth Sci 76:313

    Article  Google Scholar 

  • Xie W, Li X, Jian W, Yang Y, Liu H, Robledo LF, Nie W (2021) A novel hybrid method for landslide susceptibility mapping-based GeoDetector and machine learning cluster: a case of Xiaojin county, China. ISPRS Int J Geo-Inform 10:93

    Article  Google Scholar 

  • Xu C, Xu X, Lee YH, Tan X, Yu G, Dai F (2012) The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modeling. Environ Earth Scie 66:1603–1616

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA 72:1–12

    Article  Google Scholar 

  • Yang B, Wang T, Yang D, Chang L (2008) BOAI: fast alternating decision tree induction based on bottom-up evaluation. Springer, Berlin, pp 405–416

    Google Scholar 

Download references

Funding

This study was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JLM-7, Program No. 2020JQ-747).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifei Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Chen, W., Peng, C. et al. Modeling landslide susceptibility using an evidential belief function-based multiclass alternating decision tree and logistic model tree. Environ Earth Sci 81, 404 (2022). https://doi.org/10.1007/s12665-022-10525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10525-3

Keywords

Navigation