Skip to main content

Advertisement

Log in

Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The environmental assessment and management of historical mining sites contaminated with various inorganic species require a better knowledge of pollutant-bearing phases. Among elements present in mining soils, arsenic is a toxic metalloid with potential high content and high mobility capacity into the environment. The objective of this paper was to investigate the mobility and fractionation of arsenic (As) in a highly As contaminated soil (ca. 3 wt%). The soil was collected from an old gold mining site in France, where mining activities and smelting processes of gold ores took place. Single and sequential chemical extraction procedures were firstly conducted. These leaching tests were used to assess the potential mobility of As depending on its fractionation in the contaminated soil, and also on the portion of As sorbed onto soil particles. Additionally numerical simulations were performed using the USGS software PHREEQC-3 in order to evaluate the role of adsorption on As mobilization. This multidisciplinary approach provided information on the nature of As fixation in this mining soil. Moreover the role of adsorption in the control of dissolved As was evidenced by geochemical modeling. Results showed that As appeared to be mainly (ca. 72 wt%) reversibly sorbed to iron (Fe) compounds in the soil, in particular Fe oxyhydroxides. Consequently a potential risk of As mobilization exists especially under acidic and/or reducing conditions, which frequently occurs in mining environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR (1996) Qualité des sols—Sols, sédiments—Mise en solution totale par attaque acide (NF X31-147). AFNOR, Paris

    Google Scholar 

  • Alam MGM, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43(8):1035–1041. doi:10.1016/S0045-6535(00)00205-8

    Article  Google Scholar 

  • Azcue JM, Nriagu JO (1995) Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J Geochem Explor 52(1):81–89. doi:10.1016/0375-6742(94)00032-7

    Article  Google Scholar 

  • Baker DE, Chesnin L (1975) Chemical monitoring of soils for environmental quality and animal and human health. Adv Agro 27:305–375. doi:10.1016/S0065-2113(08)70013-0

    Article  Google Scholar 

  • Bayard R, Chatain V, Gachet C, Troadec A, Gourdon R (2006) Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Water Res 40(6):1240–1248. doi:10.1016/j.watres.2006.01.025

    Article  Google Scholar 

  • Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P (2014) Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Res 55:30–39. doi:10.1016/j.watres.2014.02.002

    Article  Google Scholar 

  • Bodénan F, Baranger P, Piantone P, Lassin A, Azaroual M, Gaucher E, Braibant G (2004) Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrogeochemical study and investigation of in situ redox signatures. Appl Geochem 19(11):1785–1800. doi:10.1016/j.apgeochem.2004.03.012

    Article  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park JE, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J Hazard Mater 266:141–166. doi:10.1016/j.jhazmat.2013.12.018

    Article  Google Scholar 

  • Bowell R (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286. doi:10.1016/0883-2927(94)90038-8

    Article  Google Scholar 

  • Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2(3):251–296. doi:10.1016/0375-6742(73)90003-4

    Article  Google Scholar 

  • Carbonell-Barrachina A, Jugsujinda A, DeLaune RD, Patrick WH, Burló F, Sirisukhodom S, Anurakpongsatorn P (1999) The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil. Environ Int 25(5):613–618. doi:10.1016/S0160-4120(99)00027-6

    Article  Google Scholar 

  • Carrillo-Chávez A, Salas-Megchún E, Levresse G, Muñoz-Torres C, Pérez-Arvizu O, Gerke T (2014) Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: modeling geochemical controls of metals in the surface environment. J Geochem Explor 144(Part A):28–36. doi:10.1016/j.gexplo.2014.03.017

    Article  Google Scholar 

  • Chatain V (2004) Characterization of arsenic and other inorganic constituents potential mobilization from soils collected from a gold mining site. Doctoral dissertation, INSA-Lyon, Lyon University, France

  • Chatain V, Sanchez F, Bayard R, Moszkowicz P (2003) Arsenic behavior in mining soil. J Phys-Paris IV 107(1):289–292. doi:10.1051/jp4:20030298

    Google Scholar 

  • Chatain V, Bayard R, Sanchez F, Moszkowicz P, Gourdon R (2005a) Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ Int 31(2):221–226. doi:10.1016/j.envint.2004.09.019

    Article  Google Scholar 

  • Chatain V, Sanchez F, Bayard R, Moszkowicz P, Gourdon R (2005b) Effect of experimentally induced reducing conditions on the mobility of arsenic from a mining soil. J Hazard Mater 122(1):119–128. doi:10.1016/j.jhazmat.2005.03.026

    Article  Google Scholar 

  • Clozel B, Battaglia F, Conil P, Ignatiadis I (2002) Physical, chemical, and biological treatability of contaminated soils (Final report—BRGM/RP-52065-FR). BRGM, Orléans

    Google Scholar 

  • Coussy S, Benzaazoua M, Bussière B, Peyronnard O, Blanc D, Moszkowicz P, Malchère A (2010) Stabilization/solidification of arsenic in cemented paste backfill: geochemical modeling as a mineralogical characterization tool. In: Proceedings of the first International Stabilization/Solidification Technology forum, pp. 161–170

  • Drouhot S, Raoul F, Crini N, Crini N, Tougard, Druart C, Rieffel D, Lambert JC, Tête N, Giraudoux P, Scheifler R (2014) Responses of wild small mammals to arsenic pollution at a partialy remediated mining site in Southern France. Sci Total Environ 470–471:1012–1022

    Article  Google Scholar 

  • Dzombak DA, Morel FM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Flakova R, Zenisova Z, Sracek O, Kremar D, Ondrejkova I, Chovan M, Lalinska B, Fendekova M (2012) The behavior of arsenic and antimony at Pezinok mining site, southwestern part of the Slovak Republic. Environ Earth Sci 66:1043–1057

    Article  Google Scholar 

  • Gonzalez-Fernandez O, Queralt I, Manteca JI, Garcia G, Carvalho ML (2011) Distribution of metals in soils and plants around mineralized zones at Cartagena-La Unión mining district (SE, Spain). Environ Earth Sci 63(6):1227–1237

    Article  Google Scholar 

  • Huang YC (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment—Part 1. Wiley, New York, pp 17–49

    Google Scholar 

  • Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl Geochem 14(8):1015–1030. doi:10.1016/S0883-2927(99)00008-6

    Article  Google Scholar 

  • Hummel W, Berner U, Curti E, Pearson F, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Nagra NTB 02-16, Nagra, Wettingen, Switzerland. http://www.nagra.ch/g3.cms/s_page/77900/s_name/shopengl/S_NAME/shopde/lang/EN

  • Jana U, Chassany V, Bertrand G, Castrec-Rouelle M, Aubry E, Boudsocq S, Laffray D, Repellin A (2012) Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation. J Environ Manage 110:188–193

    Article  Google Scholar 

  • Jiang W, Zhang S, Shan XQ et al (2005) Adsorption of arsenate on soils. Part 2: modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environ Pollut 138(2):285–289. doi:10.1016/j.envpol.2005.03.008

    Article  Google Scholar 

  • Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19(3):159–204. doi:10.1089/109287502760079188

    Article  Google Scholar 

  • Lumsdon DG, Meeussen JCL, Paterson E, Garden LM, Anderson P (2001) Use of solid phase characterisation and chemical modelling for assessing the behaviour of arsenic in contaminated soils. Appl Geochem 16(6):571–581. doi:10.1016/S0883-2927(00)00063-9

    Article  Google Scholar 

  • Matera V, Le Hecho I, Laboudigue A, Thomas P, Tellier S, Astruc M (2003) A methodological approach for the identification of arsenic bearing phases in polluted soils. Environ Pollut 126(1):51–64. doi:10.1016/S0269-7491(03)00146-5

    Article  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96(2–3):183–193. doi:10.1016/j.gexplo.2007.04.011

    Article  Google Scholar 

  • Nordstrom DK, Parks GA (1987) Solubility and stability of scorodite, FeAsO4·2H2O: discussion. Am Mineral 72(7–8):849–851

    Google Scholar 

  • Paktunc D, Bruggeman K (2010) Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Appl Geochem 25(5):674–683. doi:10.1016/j.apgeochem.2010.01.021

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

  • Peyronnard O, Blanc D, Benzaazoua M, Moszkowicz P (2009) Study of mineralogy and leaching behavior of stabilized/solidified sludge using differential acid neutralization analysis: Part II: use of numerical simulation as an aid tool for cementitious hydrates identification. Cement Concrete Res 39(6):501–509. doi:10.1016/j.cemconres.2009.03.012

    Article  Google Scholar 

  • Reith F, McPhail D (2007) Mobility and microbially mediated mobilization of gold and arsenic in soils from two gold mines in semi-arid and tropical Australia. Geochim Cosmochimi Ac 71(5):1183–1196. doi:10.1016/j.gca.2006.11.014

    Article  Google Scholar 

  • Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California. Appl Geochem 15(8):1219–1244. doi:10.1016/S0883-2927(99)00115-8

    Article  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  • Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19(2):169–180. doi:10.1016/j.apgeochem.2003.09.005

    Article  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam T 124:79–110

    Google Scholar 

  • van der Sloot H, Heasman L, Quevauviller P (1997) Harmonization of leaching/extraction tests. Studies in Environmental Science. Elsevier, Amsterdam

    Google Scholar 

  • Yang JK, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequestration, and bioaccessibility of As (V) in soils. Environ Sci Technol 36(21):4562–4569. doi:10.1021/es011507s

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Région Rhône-Alpes and the Association RE.CO.R.D. (Waste Research Cooperative Network, France) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Chatain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisone, S., Chatain, V., Blanc, D. et al. Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil. Environ Earth Sci 75, 306 (2016). https://doi.org/10.1007/s12665-015-5203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5203-z

Keywords

Navigation