Skip to main content
Log in

Hydrodynamic behaviour of compacted granite sawdust from the dimension stone industry of Pontevedra (Spain): experimental and modelling

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Two large-scale column experiments have been performed to test the hydrodynamic behaviour of unsaturated, compacted granite sawdust—a material produced during the dressing of dimension stone in Pontevedra (Spain). One of the columns was equipped with psychrometers and capacitance probes while, in the other, a radial array of 80 electrodes made possible a time-dependent 3D electrical resistivity survey. All these devices allowed investigating and modelling the progressive saturation of the material. The study includes a straightforward methodology developed to calibrate the resistivity signals based on standard Proctor-compacted specimens. The progressive saturation of the granite sawdust reveals different stages: initially, an uneven advance of the saturation front (fingering) occurs; later on, this feature vanishes and is replaced by a more regular advance of the saturation front. Numerical analysis of the results shows that the yield capacity of the granite sawdust is ~0.39 m3 m−3 and a saturated hydraulic conductivity ~2 × 10−6 m s−1. The latter, which corresponds to the specific standard Proctor compaction, is not sufficient to support the use of granite sawdust for compacted-single-layer capping structures. Nonetheless, increased compaction efforts or improved design criteria (multilayer systems or capillary barriers) can keep bearing when considering granite sawdust for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • American Society for Testing and Materials (2007) Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft (600 kN-m/m)). ASTM Standard D698-07e1. ASTM, West Conshohocken, PA

  • American Society for Testing and Materials (2009) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM Standard D1557. ASTM, West Conshohocken, PA

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Petrol Eng 146:54–62

    Google Scholar 

  • Barrientos V (2007) Caracterización geotécnica de los serrines de granito y algunas aplicaciones en ingeniería civil. Dissertation, Universidade da Coruña

  • Barrientos V, Delgado J, Navarro V, Juncosa R, Falcon I, Vázquez A (2010) Characterization and geochemical–geotechnical properties of granite sawdust produced by the dimension stone industry of O Porrino (Pontevedra, Spain). Q J Eng Geol Hydroge 43:141–155. doi:10.1144/1470-9236/08-098

    Article  Google Scholar 

  • Borghetti A, De Oliveira M, Paulo V, Moreira PS, Claudia M, Gondim RM (2009) Design of a dry cover pilot test for acid mine drainage abatement in Southern Brazil I: materials characterization and numerical modeling. Mine Water Environ 28:219–231. doi:10.1007/s10230-009-0077-5

    Article  Google Scholar 

  • Campbell GS, Campbell CS, Daniel H (2005) Water content and potential, measurement. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 4, Oxford, pp 253–257

  • Carro D, Delgado J, Vázquez A, Barrientos V, Juncosa R (2008) Final disposal of the wastes associated with the oil spill of the tanker prestige through its stabilization with quicklime and granite fines. Soil Sedim Contam 17:393–410. doi:10.1080/15320380802146636

    Article  Google Scholar 

  • Delgado J, Vázquez A, Juncosa R, Barrientos V (2006) Geochemical assessment of the contaminant potential of granite fines produced during sawing and related processes associated to the dimension stone industry. J Geochem Explor 88:24–27. doi:10.1016/j.gexplo.2005.08.009

    Article  Google Scholar 

  • Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho J, Chaminé H, Marques J, Vieira G, Mora C, Sodré Borges F (2011) Evaluation of water resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model. Environ Earth Sci 62:1219–1234. doi:10.1007/s12665-010-0610-7

    Article  Google Scholar 

  • Falcon-Suarez I (2011) Los serrines de granito como barrera de impermeabilización para su uso en vertederos. Dissertation, Universidade da Coruña

  • Falcon-Suarez I, Rammlmair D, Juncosa-Rivera R, Delgado-Martin J (2014) Application of Rhizon SMS for the assessment of the hydrodynamic properties of unconsolidated fine grained materials. Eng Geol 172:69–76. doi:10.1016/j.enggeo.2014.02.001

    Article  Google Scholar 

  • Fraser J, McBride RA (2000) The utility of aggregate processing fines in the rehabilitation of dolomite quarries. Land Degrad Dev 11:1–17. doi:10.1002/(SICI)1099-145X(200001/02)

    Article  Google Scholar 

  • Glass RJ, Yarrington L (1996) Simulation of gravity fingering in porous media using a modified invasion percolation model. Geoderma 70:231–252. doi:10.1016/0016-7061(95)00087-9

    Article  Google Scholar 

  • Günther T, Rücker C (2013) Boundless electrical resistivity tomography, BERT—the user tutorial. Version 2.0. http://resistivity.net/download/bert-tutorialpdf. Accessed 25 Oct 2007

  • ICAR (2000) An investigation of the status of by-product fines in the United States. International Center for Aggregate Research Report 101-1, Austin

  • Kelleners TJ, Soppe RWO, Ayars JE, Skaggs TH (2004a) Calibration of capacitance probe sensors in a saline silty clay soil. Soil Sci Soc Am J 68:770–778. doi:10.2136/sssaj2004.7700

    Article  Google Scholar 

  • Kelleners TJ, Soppe RWO, Robinson DA, Schaap MG, Ayars JE, Skaggs TH (2004b) Calibration of capacitance probe sensors using electric circuit theory. Soil Soil Sci Soc Am J 68:430–439. doi:10.2136/sssaj2004.0430

    Article  Google Scholar 

  • Khire MV, Benson CH, Bosscher PJ (2000) Capillary barriers: design variables and water balance. J Geotech Geoenv Eng 126:695–708. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Navarro V, Barrientos V, Yustres A, Delgado J (2008) Settlement of embankment fills constructed of granite fines. Comput Geosci 34:978–992. doi:10.1016/j.cageo.2007.07.007

    Article  Google Scholar 

  • Redwan M, Rammlmair D (2010) Simultaneous monitoring of water saturation and fluid conductivity in unconsolidated sand columns. Soil Sci Soc Am J 74:1457–1468. doi:10.2136/sssaj2009.0398

    Article  Google Scholar 

  • Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M (2005) A Rhizon in situ sampler (RISS) for pore water sampling from aquatic sediments. Limnol Oceanogr Meth 3:361–371. doi:10.4319/lom.2005.3.361

    Article  Google Scholar 

  • Seidel K, Lange G (2007) Direct current resistivity methods. In: Springer (eds) Environ Geol, Berlin, pp 205–37. doi: 10.1007/978-3-540-74671-3_8

  • Shackelford CD, Javed F (1991) Large-scale laboratory permeability testing of a compacted clay soil. Geotech Test J 14:171–179. doi:10.1520/GTJ10559J

    Article  Google Scholar 

  • Thomas HR, He Y (1997) A coupled heat–moisture transfer theory for deformable unsaturated soil and its algorithmic implementation. Int J Numer Methods Eng 40:3421–3441. doi:10.1002/(SICI)1097-0207(19970930)

    Article  Google Scholar 

  • Thomas HR, He Y (1998) Modelling the behaviour of unsaturated soil using an elastoplastic constitutive model. Geotechnique 48:589–603. doi:10.1680/geot.1998.48.5.589

    Article  Google Scholar 

  • Thomas H, Sedighi M, Vardon P (2012) Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions. Geotech Geol Eng 30:841–857. doi:10.1007/s10706-012-9502-9

    Article  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurement in coaxial transmission lines. Water Resour Res 16:574–582. doi:10.1029/WR016i003p00574

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of soil. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Vázquez A (2005) Modelización Geoquímica de los Serrines de Granito. Dissertation, Universidade da Coruña

  • Vázquez A, Juncosa R, Barrientos V, Falcon I, Delgado J, Navarro V (2007) Hydrodynamic and reactive transport modeling of the behavior of compacted granite saw dust for landfill liners and covers. In: Bullen TD, Wand Y (eds) Water–rock interaction, vol 1, Rotterdam, pp 653–657

Download references

Acknowledgments

Funds for this work have been provided by the Ministry of Science and Innovation (BIA2005-07916-C02-01), Xunta de Galicia (10REM003CT and 10MDS007CT) and the European Regional Development Funds 2007/2013. Gratefully acknowledged are the Geoenvironmental Research Centre at Cardiff University, where the numerical modelling was carried out, and BGR of Hannover, where the experimental procedure was partially undertaken. Support of the Fundación Centro Tecnolóxico do Granito is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Falcon-Suarez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcon-Suarez, I., Juncosa-Rivera, R., Vardon, P. et al. Hydrodynamic behaviour of compacted granite sawdust from the dimension stone industry of Pontevedra (Spain): experimental and modelling. Environ Earth Sci 75, 421 (2016). https://doi.org/10.1007/s12665-015-5112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5112-1

Keywords

Navigation