Skip to main content

Advertisement

Log in

Chemical composition and source identification of rainwater constituents at an urban site in Xi’an

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Major ions, pH and electric conductivity (EC) in rainwater samples collected from June 2011 to July 2012 were analyzed to evaluate chemical characteristics and source apportionment of rainwater in Xi’an, a city located on the loess deposits. The rainwater was slightly alkaline with a daily volume-weighted mean (VWM) pH of 7.7, which ranged from 7.4 to 8.4. The VWM concentrations of major ions followed the order of Ca2+ > SO4 2− > NH4 + > NO3  > Cl > Na+ > K+ > Mg2+ > F. Ca2+ and SO4 2− dominated in cations and anions, respectively. Investigations of neutralization factors indicated that the acidity of rainwater in Xi’an was neutralized by NH4 + and Ca2+, which presented relatively higher neutralization capability than cities in southern China. The back trajectory analysis showed that the chemistry of rainwater in Xi’an is influenced by local pollutions sources and soil dust in local and remote area. Large inputs of soil dust and coal combustion during the winter and spring led to higher values of major ions and pH values during dry seasons than wet seasons. The principal factor analysis, correlation analysis, and source apportionment indicated that SO4 2− and NO3 were from anthropogenic sources, while Ca2+, K+, and Mg2+ were from crust fractions. The estimated annual wet depositions for sulfur, nitrogen, and calcium were 3.9, 1.5, and 4.2 t/km2, respectively. Although rainwater acidity in Xi’an was mainly caused by H2SO4, the contribution of HNO3 will be enhanced due to increasing NOx and relatively stable SO2 emissions in the future. The high concentrations of EC, SO4 2−, and NO3 in rainwater indicated Xi’an is severely polluted. To improve air quality in Xi’an, simultaneous reduction of particle emissions and fossil fuel and vehicles emissions are worthy of advocating. The results have implications for identification of potential sources in rainwater and for evaluation of air quality improvement in Xi’an and other similar cities in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akpo AB, Galy-Lacaux C, Laouali D, Delon C, Liousse C, Adon M, Gardrat E, Mariscal A, Darakpa C (2015) Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin). Atmos Environ 115:110–123

    Article  Google Scholar 

  • Al-Khashman OA (2005) Ionic composition of wet precipitation in the Petra Region, Jordan. Atmos Res 78:1–12

    Article  Google Scholar 

  • Al-Khashman OA (2009) Chemical characteristics of rainwater collected at a western site of Jordan. Atmos Res 91:53–61

    Article  Google Scholar 

  • Báez A, Belmont R, García R, Padilla H, Torres MC (2007) Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico. Atmos Res 86:61–75

    Article  Google Scholar 

  • Bai L, Wang ZL (2014) Anthropogenic influence on rainwater in the Xi’an City, Northwest China: constraints from sulfur isotope and trace elements analyses. J Geochem Explor 137:65–72

    Article  Google Scholar 

  • Balasubramanian R, Victor T, Chun N (2001) Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Pollut 130:451–456

    Article  Google Scholar 

  • Berner EK, Berner RA (1987) The global water cycle. Geochemistry and environment. Prentice-Hall, New York, p 394

    Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Ali K (2011) Influence of local sources on rainwater chemistry over Pune region, India. Atmos Res 100:121–131

    Article  Google Scholar 

  • Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137

    Article  Google Scholar 

  • Cao YZ, Wang SY, Zhang G, Luo JY, Lu SY (2009) Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China. Atmos Res 94:462–469

    Article  Google Scholar 

  • Cao JJ, Tie XX, Dabberdt WF, Jie T, Zhao ZZ, An ZS, Shen ZX, Feng YC (2013) On the potential high acid deposition in northeastern China. J Geophys Res 118:4834–4846

    Google Scholar 

  • Chidambaram S, Paramaguru P, Prasanna MV, Karmegam U, Manikandan S (2014) Chemical characteristics of coastal rainwater from Puducherry to Neithavasal, Southeastern coast of India. Environ Earth Sci 72:557–567

    Article  Google Scholar 

  • Fujita S, Takahashi A, Weng JH, Huang LF, Kim HK, Li CK, Huang FTC, Jeng FT (2000) Precipitation chemistry in East Asia. Atmos Environ 34:525–537

    Article  Google Scholar 

  • Han GL, Tang Y, Wu QX, Tan Q (2010) Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China. Atmos Environ 44:174–181

    Article  Google Scholar 

  • Hu GP, Balasubramanian R, Wu CD (2003) Chemical characterization of rainwater at Singapore. Chemosphere 51:747–755

    Article  Google Scholar 

  • Huang K, Zhuang GS, Xu C, Wang Y, Tang AH (2008) The chemistry of the severe acidic precipitation in Shanghai, China. Atmos Res 89:149–160

    Article  Google Scholar 

  • Huang DY, Xu YG, Peng P, Zhang HH, Lan JB (2009) Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: comparison with precipitation in other major Chinese cities. Environ Pollut 157:35–41

    Article  Google Scholar 

  • Huang DY, Xu YG, Zhou B, Zhang HH, Lan JB (2010) Wet deposition of nitrogen and sulfur in Guangzhou, a subtropical area in South China. Environ Monit Assess 171:429–439

    Article  Google Scholar 

  • Ito M, Mitchell M, Driscoll CT (2002) Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmos Environ 36:1051–1062

    Article  Google Scholar 

  • Larssen T, Carmichael GR (2000) Acid rain and acidification in China: the importance of base cation deposition. Environ Pollut 110:89–102

    Article  Google Scholar 

  • Larssen T, Lydersen E, Tang D, He Y, Gao J, Liu H, Duan L, Seip HM (2006) Acid rain in China. Environ Sci Technol 40:418–425

    Article  Google Scholar 

  • Li CL, Kang SC, Zhang QG, Kaspari S (2007) Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmos Res 85:351–360

    Article  Google Scholar 

  • Li ZJ, Li ZX, Wang TT, Gao Y, Cheng AF, Guo XY, Guo R, Jia B, Song YX, Han CT, Theakstone WH (2015) Composition of wet deposition in the central Qilian Mountains, China. Environ Earth Sci 73:7315–7328

    Article  Google Scholar 

  • Liu B, Kang SC, Sun JM, Zhang YL, Xu R, Wang YJ, Liu YW, Cong ZY (2013) Wet precipitation chemistry at a high-altitude site (3,326 ma.s.l.) in the south eastern Tibetan Plateau. Environ Sci Pollut Res 20:5013–5027

    Article  Google Scholar 

  • Lu XW, Li LY, Li N, Yang G, Luo DC, Chen JH (2011) Chemical characteristics of spring rainwater of Xi’an city, NW China. Atmos Environ 45:5058–5063

    Article  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China (MEPPRC) (2014) Environmental situation in China’s Bulletin. http://english.mep.gov.cn/

  • Moreda-Piñeiro J, Alonso-Rodríguez E, Moscoso-Pérez C, Blanco-Heras G, Turnes-Carou I, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2014) Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos Environ 88:30–38

    Article  Google Scholar 

  • Niu HW, He YQ, Lu XX, Shen J, Du JK, Zhang T, Pu T, Xin HJ, Chang L (2014) Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmos Res 144:195–206

    Article  Google Scholar 

  • Okuda T, Iwase T, Ueda H, Suda Y, Tanaka S, Dokiya Y, Fushimi K, Hosoe M (2005) Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990–2002. Sci Total Environ 339:127–141

    Article  Google Scholar 

  • Paternoster M, Sinisi R, Mancusi C, Pilat K, Sabia A, Mongelli G (2014) Natural versus anthropogenic influences on the chemical composition of bulk precipitation in the southern Apennines, Italy: a case study of the town of Potenza. J Geochem Explor 145:242–249

    Article  Google Scholar 

  • Rao WB, Han GL, Tan HB, Jiang S (2015) Chemical and Sr isotopic compositions of rainwater on the Ordos Desert Plateau, Northwest China. Environ Earth Sci. doi:10.1007/s12665-015-4594-1

  • Samara C, Tsitouridou R, Balafoutis CH (1992) Chemical composition of rain in Thessaloniki, Greece, in relation to meteorological conditions. Atmos Environ 26:359–367

    Article  Google Scholar 

  • Staelens J, Schrijver A, Avermaet P, Genouw G, Verhoest N (2005) A comparison of bulk and wet-only deposition at two adjacent sites in Melle (Belgium). Atmos Environ 39:7–15

    Article  Google Scholar 

  • Tang J, Xu XB, Ba J, Wang SF (2010) Trends of the precipitation acidity over China during 1992–2006. Chin Sci Bull 55:1800–1807

    Article  Google Scholar 

  • Tu J, Wang H, Zhang Z, Jin X, Li W (2005) Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmos Res 73:283–298

    Article  Google Scholar 

  • Wang H, Han GL (2011) Chemical composition of rainwater and anthropogenic influences in Chengdu, Southwest China. Atmos Res 99:190–196

    Article  Google Scholar 

  • Wang YS, Yu WP, Pan YP, Wu D (2012) Acid neutralization of precipitation in Northern China. J Air Waste Manag Assoc 62:204–211

    Article  Google Scholar 

  • Wu QX, Han GL, Tao FX, Tang Y (2012) Chemical composition of rainwater in a karstic agricultural area, Southwest China: the impact of urbanization. Atmos Res 111:71–78

    Article  Google Scholar 

  • Wu D, Wang SG, Xia JR, Meng XY, Shang KZ, Xie YY, Wang RB (2013) The influence of dust events on precipitation acidity in China. Atmos Environ 79:138–146

    Article  Google Scholar 

  • XAMBS (Xi’an Municipal Bureau of Statistics) (2000–2013) Xi’an statistical yearbook. China Statistics Press, Beijing (in Chinese)

  • Xiao HW, Xiao HY, Long AM, Wang YL, Liu CQ (2013) Chemical composition and source apportionment of rainwater at Guiyang, SW China. J Atmos Chem 70:269–281

    Article  Google Scholar 

  • Xu ZF, Han GL (2009) Chemical and strontium isotope characterization of rainwater in Beijing, China. Atmos Environ 43:1954–1961

    Article  Google Scholar 

  • Xu ZF, Li YS, Tang Y, Han GL (2009) Chemical and strontium isotope characterization of rainwater at an urban site in Loess Plateau, Northwest China. Atmos Res 94:481–490

    Article  Google Scholar 

  • Xu ZF, Wu Y, Liu WJ, Liang CS, Ji JP, Zhao T, Zhang X (2015) Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city, China. Atmos Res 164–165:278–285

    Article  Google Scholar 

  • Yang FM, He KB, Lei Y, Ma YL, Yu XC, Tanaka S, Okuda T, Iwase T (2004) Chemical characters of atmospheric precipitation in Beijing in years of 2001–2003. China Environ Sci 24:538–541 (in Chinese)

    Google Scholar 

  • Yu S, Kuo YM, Du WY, He SY, Sun PA, Yuan YQ, Li R, Li YS (2015) The hydrochemistry properties of precipitation in karst tourism city (Guilin), Southwest China. Environ Earth Sci 74:1061–1069

    Article  Google Scholar 

  • Zhang DD, Jim CY, Peart MR, Shi C (2003a) Rapid changes of precipitation pH in Qinghai Province, the northeastern Tibetan Plateau. Sci Total Environ 305:241–248

    Article  Google Scholar 

  • Zhang DD, Peart MR, Jim CY, He YQ, Li BS, Chen JA (2003b) Precipitation chemistry of Lhasa and other remote towns, Tibet. Atmos Environ 37:231–240

    Article  Google Scholar 

  • Zhang M, Wang S, Wu F, Yuan X, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84:311–322

    Article  Google Scholar 

  • Zhang T, Cao JJ, Tie XX, Shen ZX, Liu SX, Ding H, Han YM, Wang GH, Ho KF, Qiang J, Li WT (2011) Water-soluble ions in atmospheric aerosols measured in Xi’an, China: seasonal variations and sources. Atmos Res 102:110–119

    Article  Google Scholar 

  • Zhang NN, He YQ, Cao JJ, Ho K, Shen ZX (2012a) Long-term trends in chemical composition of precipitation at Lijiang, southeast Tibetan Plateau, southwestern China. Atmos Res 106:50–60

    Article  Google Scholar 

  • Zhang XY, Jiang H, Zhang QX, Zhang X (2012b) Chemical characteristics of rainwater in northeast China, a case study of Dalian. Atmos Res 116:151–160

    Article  Google Scholar 

  • Zhang YL, Kang SC, Li CL, Cong ZY, Zhang QG (2012c) Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. J Atmos Chem 69:187–200

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Youth Innovation Promotion Association of CAS (2015336), Shaanxi National Science Foundation (No. 2015JM4131), and the Key Research Program of the Chinese Academy of Sciences (Grant KZZD-EW-04-02). Appreciation is expressed to Executive Editor and the anonymous reviewers for insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J. Chemical composition and source identification of rainwater constituents at an urban site in Xi’an. Environ Earth Sci 75, 209 (2016). https://doi.org/10.1007/s12665-015-4997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4997-z

Keywords

Navigation