Skip to main content

Advertisement

Log in

Assessing the influence of groundwater and land surface scheme in the modelling of land surface–atmosphere feedbacks over the FIFE area in Kansas, USA

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The land surface–atmosphere interaction is described differently in large-scale surface schemes of regional climate models and small-scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry periods where soils are depleted and groundwater is the only water supply. These mechanisms are analysed by combining a distributed hydrological model (MIKE SHE) and a regional climate model (HIRHAM) and comparing simulation results to the FIFE area observation data in Kansas, USA. The numerical experiments include five simulations. First MIKE SHE is forced by observed climate data in two versions (1) with groundwater at a fixed uniform depth, and (2) with a dynamical groundwater component simulating shallow groundwater conditions in river valleys. (3) In a third simulation, MIKE SHE is forced by HIRHAM-simulated precipitation. The last two simulations include (4) a standard HIRHAM simulation, and (5) a fully coupled HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE area, while HIRHAM in standard configuration is used for the remaining model area. The results show a clear correlation between depth to the groundwater and evapotranspiration with a distinct groundwater depth threshold at 0.5–3 m. During the dry summer period, the two MIKE SHE simulations using distributed groundwater reproduced evapotranspiration better than MIKE SHE with unsaturated flow alone and the HIRHAM simulations. This indicates that including dynamic groundwater in a fully coupled climate-hydrology model may improve evapotranspiration fluxes from areas with shallow groundwater tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anyah RO, Weaver CP, Miguez-Macho G, Fan Y, Robock A (2008) Incorporating water table dynamics in climate modeling: 3. simulated groundwater influence on coupled land-atmosphere variability. J Geophys Res. doi:10.1029/2007JD009087

  • Betts AK, Ball JH (1998) FIFE surface climate and site-average dataset 1987–89. J Atmos Sci 55:1091–1108. doi:10.1175/1520-0469(1998)055<1091:FSCASA>2.0.CO;2

    Article  Google Scholar 

  • Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nature Clim Change 2:433–436. doi:10.1038/nclimate1454

    Article  Google Scholar 

  • Butts M, Drews M, Larsen MAD, Lerer S, Rasmussen SH, Grooss J, Overgaard J, Refsgaard JC, Christensen OB, Christensen JH (2014) Embedding complex hydrology in the regional climate system—dynamic coupling across different modelling domains. Adv Water Resour 74:166–184. doi:10.1016/j.advwatres.2014.09.004

    Article  Google Scholar 

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model. Version 5. DMI Technical Report 06-17. Available from DMI, Lyngbyvej 100, Copenhagen Ø, Denmark

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett. doi:10.1029/2008GL035694

    Google Scholar 

  • Dabberdt WF (1994) Automated met station data FIFE. http://www.daac.ornl.gov. Accessed 20 Feb 2015 (also published in Strebel et al. (1994))

  • Davis FW, Schimel DS, Friedl MA, Michaelsen JC, Kittel TGF, Dubayah R, Dozier J (1992) Covariance of biophysical data with digital topographic and land use maps over the FIFE site. J Geophys Res 97:19009–19021. doi:10.1029/92JD01345

    Article  Google Scholar 

  • Famiglietti JS, Wood EF (1994) Multiscale modeling of spatially variable water and energy balance processes. Water Resour Res 30:3061–3078. doi:10.1029/94WR01498

    Article  Google Scholar 

  • Giorgi F, Avissar R (1997) Representation of heterogeneity effects in Earth system modeling: experience from land surface modeling. Rev Geophys 35:413–437. doi:10.1029/97RG01754

    Article  Google Scholar 

  • Graham DN, Butts MB (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Singh VP, Frevert DK (eds) Watershed models. CRC Press, Boca Raton, pp 245–272. ISBN 0849336090

    Google Scholar 

  • Graham LP, Andréasson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule River basin. Clim Change 81:293–307

    Article  Google Scholar 

  • Gregersen JB, Gijsbers PJA, Westen SJP (2007) OpenMI: open modelling interface. J Hydroinf 9:175. doi:10.2166/hydro.2007.023

    Article  Google Scholar 

  • Huemmrich FK, Levine E (1994) Soil survey reference FIFE. Data set available on-line http://www.daac.ornl.gov. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. Accessed 20 Feb 2015 (also published in Strebel et al. (1994))

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi:10.1007/s10584-006-9213-4

    Article  Google Scholar 

  • Kanemasu ET (1994) Soil hydraulic conductivity data FIFE. http://www.daac.ornl.gov. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. Accessed 20 Feb 2015 (also published in Strebel et al. (1994))

  • Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44:W02402. doi:10.1029/2007WR006004

    Google Scholar 

  • Larsen MAD (2014) Integrated climate and hydrology modelling—catchment scale coupling of a regional climate model and a hydrological model. In: Presentation at the TERENO International Conference 2014, Oct 1, Bonn, Germany

  • Larsen MAD, Refsgaard JC, Drews M, Butts MB, Jensen KH, Christensen JH, Christensen OB (2014) Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment. Hydrol Earth Syst Sci 18:4733–4749. doi:10.5194/hess-18-4733-2014

    Article  Google Scholar 

  • Larsen MAD, Refsgaard JC, Jensen KH, Butts MM, Stisen S, Mollerup M (2016) Calibration of a distributed hydrology and land surface model usingenergy flux measurements. Agr Forest Meteorol 217:74–88. doi:10.1016/j.agrformet.2015.11.012

    Article  Google Scholar 

  • Macpherson GL (1996) Hydrogeology of thin limestones: the Konza Prairie long-term ecological research site, Northeastern Kansas. J Hydrol 186:191–228. doi:10.1016/S0022-1694(96)03029-6

    Article  Google Scholar 

  • Maxwell RM, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669. doi:10.1038/ngeo315

    Article  Google Scholar 

  • Maxwell RM, Lundquist JK, Mirocha JD, Smith SG, Woodward CS, Tompson AFB (2011) Development of a coupled groundwater-atmosphere model. Mon Weather Rev 139:96–116. doi:10.1175/2010MWR3392.1

    Article  Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res 109:D13104. doi:10.1029/2003JD004495

    Article  Google Scholar 

  • Miguez-Macho G, Fan Y, Weaver CP, Walko R, Robock A (2007) Incorporating water table dynamics in climate modeling: 2. formulation, validation, and soil moisture simulation. J Geophys Res 112:D13108. doi:10.1029/2006JD008112

    Google Scholar 

  • Overgaard J (2005) Energy-based land-surface modelling: new opportunities in integrated hydrological modelling. PhD Thesis. Environment and Resources DTU, Technical University of Denmark

  • Overgaard J, Butts MB, Rosbjerg D (2007) Improved scenario prediction by using coupled hydrological and atmospheric models. In: Boegh E, Kunstmann H, Wagener T, Hall A, Bastidas L, Franks S, Gupta H, Rosbjerg D and Schaake J (eds) Quantification and reduction of predictive uncertainty for sustainable water resources management, vol 313. IAHS, pp 242–248

  • Rasmussen SH, Butts MB, Lerer SM, Refsgaard JC (2012a) Parameterisation and scaling of the land surface model for use in a coupled climate-hydrological model. J Hydrol 426–427:63–78. doi:10.1016/j.jhydrol.2012.01.014

    Article  Google Scholar 

  • Rasmussen SH, Christensen JH, Drews M, Gochis DJ, Refsgaard JC (2012b) Spatial-scale characteristics of precipitation simulated by regional climate models and the implications for hydrological modeling. J Hydrometeorol 13:1817–1835. doi:10.1175/JHM-D-12-07.1

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) Part 1. Model description. The atmospheric general circulation model ECHAM5. Report no. 349, Max-Planck-Institut für Meteorologie (MPI-M)

  • Sellers PJ, Hall FG (1992) FIFE in 1992: results, scientific gains, and future research directions. J Geophys Res 97:19091–19109. doi:10.1029/92JD02173

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1992) An overview of the first international satellite land surface climatology project (ISLSCP) field experiment (FIFE). J Geophys Res 97:18345–18371. doi:10.1029/92JD02111

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  • Shelton ML (2009) Hydroclimatology, perspectives and applications. Cambridge University Press, New York

  • Skamarock WC, Klemp JB, Dudhia J, Gill OD, Barker DM, Duda MG, Huang X, Wang W, Powers JG (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical note

  • Strebel DE, Landis DR, Newcomer JA, Meeson BW, Goetz SJ, Agbu PA, McManus JMP, Huemmrich KF, van Elburg-Obler D and Nickeson JE (1994) Collected data of the first ISLSCP field experiment, vol 1–5. CD-ROM. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, USA. Available from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. http://www.daac.ornl.gov/. Accessed 20 Feb 2015

  • Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya JA, Jones C, Geert, Lenderlink G, Mcdonald A, Mcgrath R, Navascues B, Nielsen NW, Degaard V, Rodriguez E, Rummukainen M, Sattler K, Sass BH, Savijarvi H, Schreur BW, Sigg R The H (2002) HIRLAM-5 scientific documentation

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen P a. EM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

  • van der Linden P, Mitchell JFB (eds) (2009) Summary of research and results from the ENSEMBLES project. ENSEMBLES: climate change and its impacts. Met Office Hadley Centre, Exeter

  • van Roosmalen L, Christensen BSB, Sonnenborg TO (2007) Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone J 6:554–571. doi:10.2136/vzj2006.0093

    Article  Google Scholar 

  • Wood EF (1994) 15 Minute Stream Flow Data: USGS (FIFE). Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. http://www.daac.ornl.gov. Accessed 20 Feb 2015 (also published in Strebel et al. (1994))

  • Wood EF (1997) Effects of soil moisture aggregation on surface evaporative fluxes. J Hydrol 190:397–412. doi:10.1016/S0022-1694(96)03135-6

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75:161–193. doi:10.1007/s007030070003

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D (2001) The advanced regional prediction system (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 76:143–165. doi:10.1007/s007030170027

    Article  Google Scholar 

  • York JP, Person M, Gutowski WJ, Winter TC (2002) Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas. Adv Water Resour 25:221–238

    Article  Google Scholar 

  • Yuan X, Xie Z, Zheng J, Tian X, Yang Z (2008) Effects of water table dynamics on regional climate: a case study over East Asian monsoon area. J Geophys Res 113:D21112. doi:10.1029/2008JD010180

    Article  Google Scholar 

  • Zeng X-M, Zhao M, Su B-K, Tang J-P, Zheng Y-Q, Zhang Y-J, Chen J (2003) Effects of the land-surface heterogeneities in temperature and moisture from the “combined approach” on regional climate: a sensitivity study. Global Planet Change 37:247–263. doi:10.1016/S0921-8181(02)00209-6

    Google Scholar 

Download references

Acknowledgments

The study was funded by a grant from the Danish Strategic Research Council for the project HYdrological Modelling for Assessing Climate Change Impacts at differeNT Scales (HYACINTS—http://www.hyacints.dk) under Contract No: DSF-EnMi 2104-07-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. D. Larsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, M.A.D., Rasmussen, S.H., Drews, M. et al. Assessing the influence of groundwater and land surface scheme in the modelling of land surface–atmosphere feedbacks over the FIFE area in Kansas, USA. Environ Earth Sci 75, 130 (2016). https://doi.org/10.1007/s12665-015-4919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4919-0

Keywords

Navigation