Skip to main content

Advertisement

Log in

Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore–reservoir simulator TOUGH2MP-WELL/EOS3

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Geothermal energy is renewable, sustainable and available in large amounts. The hot dry rock (HDR) systems, in particular, have the largest potential for long-term sustainability and therefore draw a lot of attention. The combination of horizontal wells and the technology of multiple transverse fractures technology is an attractive approach of such HDRs, which is called in this paper as the specific EGS (enhanced geothermal system). The main objective of this paper is to study the heat extraction over a period of 20 years by water circulating in a deep geothermal reservoir using this specific EGS. The wellbore flow module, T2WELL/ECO2N, is implemented in the parallelized simulator TOUGH2MP as a new code TOUGH2MP-WELL/EOS3, which enables coupled wellbore–reservoir simulations. Using this newly developed code, the sensitivity of heat extraction against various parameters of the formation and fractures is assessed. The influences of the fracture geometry and the space of two neighborhood fractures on the geothermal energy performance are analyzed. According to the results in this paper, the injection rate, the wellbore radius and the fracture permeability are three main influence factors for the distribution of total flow through individual fractures. A large injection rate, a small wellbore radius and a large fracture width will cause the short-circuit effect, which reduces the performance of this specific EGS. Compared with the classic HDR system (doublet or triplet vertical wells + single fracture), this specific EGS has a much higher performance and a longer duration of the economic production. Furthermore, the horizontal wells can also be drilled in both directions of the minimum horizontal stress instead of in just one direction, so that the energy performance is doubled and the investment cost per kW energy production is decreased and the advantage of this specific EGS is significantly enlarged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity [J/(kg K)]

F :

Mass flow rate (kg/s)

k :

Rock permeability (m2)

kz l):

Permeability-thickness product (m3)

PI:

Productivity index (m3)

p well :

Fluid pressure in wellbore cell (Pa)

p rock :

Fluid pressure in the adjacent reservoir formation cell (Pa)

r e :

Grid block radius (m)

r w :

Wellbore radius (m)

s :

Skin factor (−)

T :

Temperature (°C)

w :

Fracture width (m)

α :

Correction factor for permeability-thickness product (−)

λ :

Thermal conductivity [W/(m K)]

μ :

Fluid viscosity (Pa s)

ρ :

Fluid density (kg/m3)

ϕ :

Porosity (−)

References

  • Bodvarsson GS, Tsang CF (1982) Injection and thermal breakthrough in fractured geothermal reservoirs. J Geophys Res Solid Earth 87(B2):1031–1048. doi:10.1029/JB087iB02p01031

    Article  Google Scholar 

  • Brown DW, Duchane DV (1999) Scientific progress on the Fenton Hill HDR project since 1983. Geothermics 28(4–5):591–601. doi:10.1016/S0375-6505(99)00030-9

    Article  Google Scholar 

  • Chapin CE, Sherwood DW, Comtois WH, Walton PT, Stewart DH, Burnham JB (1971) A feasibility study of a geothermal power plant. American Oil Shale Corporation and U.S. atomic energy commission, PNE-1550

  • Cherubini Y, Cacace M, Scheck-Wenderoth M, Moeck I, Lewerenz B (2013) Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck. Environ Earth Sci 70(8):3619–3642. doi:10.1007/s12665-013-2519-4

    Article  Google Scholar 

  • Fox DB, Sutter D, Beckers KF, Lukawski MZ, Koch DL, Anderson BJ et al (2013) Sustainable heat farming: modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics 46:42–54. doi:10.1016/j.geothermics.2012.09.001

    Article  Google Scholar 

  • Franco A, Vaccaro M (2014) Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: a review. Renew Sustain Energy Rev 30:987–1002. doi:10.1016/j.rser.2013.11.041

    Article  Google Scholar 

  • Genter A, Evans K, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). CR Geosci 342(7–8):502–516. doi:10.1016/j.crte.2010.01.006

    Article  Google Scholar 

  • Gringarten AC, Witherspoon PA (1973) Extraction of heat from multiple-fractured dry hot rock. Geothermics 2(3–4):119–122. doi:10.1016/0375-6505(73)90018-7

    Article  Google Scholar 

  • Handel F, Liedl R, Frank J, Rock G (2013) Regional modeling of geothermal energy systems in shallow aquifers: the Leibnitzer Feldcase study (Austria). Environ Earth Sci 70(8):3433–3446. doi:10.1007/s12665-013-2469-x

    Article  Google Scholar 

  • Heuer N (1991) Mathematical model of a hot dry rock system. Geophys J Int 105(3):659–664. doi:10.1111/j.1365-246X.1991.tb00803.x

    Article  Google Scholar 

  • Hou Z, Zhou L, Kracke T (2013) Modelling of seismic events induced by reservoir stimulation in an enhanced geothermal system and a suggestion to reduce the deformation energy release. In: Zhao J, Li J (eds) Proceedings of first international conference on rock dynamics and applications (RocDyn-1). Lausanne, Switzerland, © 2013 Taylor & Francis Group, London

  • Hou Z, Kracke T, Gou Y, Luo X, Xing W (2014) Verbundprojekt MAGS: Konzepte zur Begrenzung der mikroseismischen Aktivität bei der energetischen Nutzung geothermischer Systeme im tiefen Untergrund: Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)

  • Huang Y, Zhou Z, Wang J (2014) Simulation of groundwater flow in fractured rocks using a coupled model based on the method of domain decomposition. Environ Earth Sci 72(8):2765–2777. doi:10.1007/s12665-014-3184-y

    Article  Google Scholar 

  • Jiang F, Chen J, Huang W, Luo L (2014) A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy 72:300–310. doi:10.1016/j.energy.2014.05.038

    Article  Google Scholar 

  • Kohl T, Evansi KF, Hopkirk RJ, Rybach L (1995) Coupled hydraulic, thermal and mechanical considerations for the simulation of hot dry rock reservoirs. Geothermics 24(3):345–359. doi:10.1016/0375-6505(95)00013-G

    Article  Google Scholar 

  • Kolditz O (1995) Modelling flow and heat transfer in fractured rocks: dimensional effect of matrix heat diffusion. Geothermics 24(3):421–437. doi:10.1016/0375-6505(95)00018-L

    Article  Google Scholar 

  • Li M, Hou Z, Gou Y (2013) Numerische Untersuchung zu einem HDR -System mit Horizontalbohrung und Multi-Fracs. Vortrag und Tagungsband des Geothermiekongesses in Essen, 12–14.11.2013

  • Llanos EM, Zarrouk SJ, Hogarth RA (2015) Numerical model of the Habanero geothermal reservoir, Australia. Geothermics 53:308–319. doi:10.1016/j.geothermics.2014.07.008

    Article  Google Scholar 

  • Ogino F, Yamamura M, Fukuda T (1999) Heat transfer from hot dry rock to water flowing through a circular fracture. Geothermics 28(1):21–44. doi:10.1016/S0375-6505(98)00043-1

    Article  Google Scholar 

  • O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30(4):395–429. doi:10.1016/S0375-6505(01)00005-0

    Article  Google Scholar 

  • Pan L, Oldenburg CM (2014) T2Well—an integrated wellbore–reservoir simulator. Comput Geosci 65:46–55. doi:10.1016/j.cageo.2013.06.005

    Article  Google Scholar 

  • Pan L, Webb SW, Oldenburg CM (2011a) Analytical solution for two-phase flow in a wellbore using the drift-flux model. Adv Water Resour 34:1656–1665. doi:10.1016/j.advwatres.2011.08.009

    Article  Google Scholar 

  • Pan L, Oldenburg CM, Wu YS, Pruess K (2011b) Transient CO2 leakage and injection in wellbore–reservoir systems for geologic carbon sequestration. Greenh Gases Sci Technol 1(4):335–350. doi:10.1002/ghg.41

    Article  Google Scholar 

  • Pan L, Oldenburg CM, Wu YS, Pruess K (2011c) T2Well/ECO2N Version 1.0: multiphase and non-isothermal model for coupled wellbore–reservoir flow of carbon dioxide and variable salinity water. Earth Sciences Division, Lawrence Berkeley National Laboratory, LBNL-4291E

  • Pruess K (2005) ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Earth Sciences Division, Lawrence Berkeley National Laboratory, LBNL-57952

  • Pruess K, Oldenburg CM, Moridis GJ (1999) TOUGH2 User’s Guide, version 2.0. Earth Sciences Division, Lawrence Berkeley National Laboratory, LBNL-43134

  • Raleigh CB, Witherspoon PA, Gringarten AC, Ohnishi Y (1974) Multiple hydraulic fracturing for the recovery of geothermal energy (abstract). EOS Trans AGU 55(4):4026

    Google Scholar 

  • Robinson ES, Potter RM, Mcinteer BB, Rowley JC, Armstrong DE, Mills RL, et al. (1971) A preliminary study of the nuclear subterrane. Rep.LA-4547. Los Alamos, N. Mex.: Los Alamos Sci. Lab

  • Shiozawa S, McClure M (2014) EGS Designs with horizontal wells, multiple stages, and proppant. In: Proceedings, thirty-ninth workshop on geothermal reservoir engineering, 24–26 February. Stanford, California, SGP-TR-202

  • Sippel J, Fuchs S, Cacace M et al (2013) Deep 3D thermal modelling for the city of Berlin (Germany). Environ Earth Sci 70(8):3545–3566. doi:10.1007/s12665-013-2679-2

    Article  Google Scholar 

  • Tenma N, Yamaguchi T, Zyvoloski G (2008) The hijiori hot dry rock test site, Japan. Evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37(1):19–52. doi:10.1016/j.geothermics.2007.11.002

    Article  Google Scholar 

  • Tenzer H, Park CH, Kolditz O, McDermott CI (2010) Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forêts (France) and Spa Urach (Germany) geothermal sites. Environ Earth Sci 61(4):853–880. doi:10.1007/s12665-009-0403-z

    Article  Google Scholar 

  • World energy council (2013) World energy resources: 2013 survey. http://www.worldenergy.org/wp-content/uploads/2013/09/Complete_WER_2013_Survey.pdf

  • Zhang K, Wu YS, Pruess K (2008) User’s guide for TOUGH2-MP—a massively parallel version of the TOUGH2 code. Earth Sciences Division, Lawrence Berkeley National Laboratory, LBNL-315E

Download references

Acknowledgments

The work presented in this paper was funded by the Chinese Ministry of Science and Technology (Grant 2012DFA60760), the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) (Grant 0325191E) and the Federal Ministry for Economic Affairs and Energy (BMWi) (Grant 0325662F). We would also like to express our sincere gratitude to Dr. Lehua Pan for his kindly support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Gou, Y., Hou, Z. et al. Investigation of a new HDR system with horizontal wells and multiple fractures using the coupled wellbore–reservoir simulator TOUGH2MP-WELL/EOS3. Environ Earth Sci 73, 6047–6058 (2015). https://doi.org/10.1007/s12665-015-4242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4242-9

Keywords

Navigation