Skip to main content

Advertisement

Log in

Assessment of impact of climate change on the blue and green water resources in large river basins in China

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Climate change as a result of the increased greenhouse gas emissions may influence the availability of water resources in many regions on the globe. In the past decades, China has been facing severe shortage of water resources. This study focuses on the assessment of the impact of climate change on both blue and green water resources in ten large river basins in China. The blue and green water resources for these river basins were derived from the terrestrial hydrological fluxes in period 1960–2100, which were simulated with the Max Planck Institute Hydrological Model—MPI-HM. The forcing data for the hydrological model, the precipitation and temperature were obtained from three coupled Atmosphere–Ocean General Circulation Models (GCMs)—ECHAM5, IPSL and CNRM, under A2 and B1 greenhouse gas emission scenarios. The statistical bias correction method was applied on the output from the three GCMs. By using this climate model–hydrology model modeling chain, the impact of climate change on the blue and green water resources was analyzed over the ten Chinese river basins. Here, the projected changes in 2071–2100 are considered relative to 1971–2000. The projected change of monthly mean and annual mean of green water resources show the general increase for all ten river basins; among them, Inland river, Zhemin river and Zhujiang river have larger change signal than other basins. For blue water resources, increases of the annual mean are projected from November to March for Heilongjiang river, Liaohe river and Yellow river, Inland river in Northern China; and decreases are projected for Huaihe river, Zhemin river, Haihe river, Yangzi river, Southwest river, and Zhujiang river basins in Southern China. It is found that climate change has impact on both blue and green water resources over large river basins in China. The sustainable blue water resources management should take into account the different changes in both Northern and Southern China. The results show that a better management of green water resources is of importance for food and ecological securities in the context of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcamo J, Henrichs T, Rösch T (2000) World water in 2025: Global modelling and scenario analysis for the world commission on water for the 21st Century. Kassel World Water Series 2. University of Kassel, Kassel, Germany

  • Alcamo J, Floerke M, Maerker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci 52(2):247–275

    Article  Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in europe: a continental perspective. Global Environ Change 9:5–23

    Article  Google Scholar 

  • Bergström S (1992) The HBV model: its structure and applications. Swedish Meteorological and Hydrological Institute Report 4, Sweden

    Google Scholar 

  • Brutsaert W, Parlange MB (1998) Hydrologic cycle explains the evaporation paradox. Nature 396:30. doi:10.1038/23845

    Article  Google Scholar 

  • Chebotarev AI (1977) Compendium of meteorology v II: Part 1 - general hydrology. World Meteorological Organisation, Geneva

    Google Scholar 

  • Chen C, Haerter JO, Hagemann S, Piani C (2011) On the contribution of statistical bias correction to the uncertainty in the projected hydrological cycle. Geophys Res Lett 38:L20403. doi:10.1029/2011GL049318

    Google Scholar 

  • Christensen NS, Dennis PL, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim Change 62:337–363

    Article  Google Scholar 

  • Déqué M, Ph Piedelievre J (1995) High resolution climate simulation over Europe. Climate Dyn 11:321–339

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dyn 10:249–266

    Article  Google Scholar 

  • Döll P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38(4):1037

    Google Scholar 

  • Döll P, Kaspar F, Alcamo J (1999) Computation of global water availability and water use at the scale of large drainage basins. Mathematische Geologie 4:111–118

    Google Scholar 

  • Fader M, Gerten D, Thammer M, Heinke J, Lotze-Campen H, Lucht W, Cramer W (2011) Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol Earth Syst Sci 15:1641–1660

    Article  Google Scholar 

  • Falkenmark M (1995) Land-water linkages: a synopsis, in land and water integration and river basin management. Land Water Bull 1:15–16

    Google Scholar 

  • Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plann Manage 132(3):129–132

    Article  Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646. doi:10.1029/97JC00480

    Article  Google Scholar 

  • Gerten D, Bondeau A, Hoff H, Lucht W, Schaphoff S, Smith P (2004) Assessment of ‘green’ water fluxes with a Dynamic Global Vegetation Model. In: Webb B, Arnell N, Onof C, MacIntyre N, Gurney R, Kirby C (eds) Hydrology: Science and Practice for the 21st Century. British Hydrological Society, British

    Google Scholar 

  • Gleick PH (1999) Studies from the water sector of the national assessment. J Am Water Resour Assoc 35:1297–1300

    Article  Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355

    Article  Google Scholar 

  • Haddeland I, Clark DB, Franssen W, Ludwig F, Voß F, Arnell NW, Bertrand N, Best M, Folwell S, Gerten D, Gomes S, Gosling SN, Hagemann S, Hanasaki N, Harding R, Heinke J, Kabat P, Koirala S, Oki T, Polcher J, Stacke T, Viterbo P, Weedon GP, Yeh P (2011) Multi-model estimate of the global terrestrial water balance: setup and first results. J Hydrometeor. doi:10.1175/2011JHM1324.1

    Google Scholar 

  • Haddeland I, Heinke J, Voß F, Eisner S, Chen C, Hagemann S, Ludwig F (2012) Effects of climate model radiation, humidity and wind estimates on hydrological simulations. Hydrol Earth Syst Sci 16:305–318. doi:10.5194/hess-16-305-2012

    Article  Google Scholar 

  • Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T, Tessler Z, Wada Y, Wisser D (2014) Global water resources affected by human interventions and climate change. PNAS 111:3251–3256

    Article  Google Scholar 

  • Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15:1065–1079. doi:10.5194/hess-15-1065-2011

    Article  Google Scholar 

  • Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. Max Planck Institute for Meteor Rep, 336, Hamburg, Germany (http://www.mpimet.mpg.de/en/wissenschaft/publikationen.html)

  • Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Climate Dyn 14:17–31

    Article  Google Scholar 

  • Hagemann S et al (2003) Improving a subgrid runoff parameterization scheme for climate model2s by the use of high resolution data derived from satellite observations. Climate Dyn 21:349–359

    Article  Google Scholar 

  • Hagemann S, Chen C, Härter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J Hydrometeorol. doi:10.1175/2011JHM1336.1

    Google Scholar 

  • Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dynam 4:129–144. doi:10.5194/esd-4-129-2013

    Article  Google Scholar 

  • Helbig C, Bauer H-S, Rink K, Wulfmeyer V, Frank M, Kolditz O (2014) Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ Earth Sci. doi:10.1007/s12665-014-3136-6

    Google Scholar 

  • Hoff H, Falkenmark M, Gerten D, Gordon L, Karlberg L, Rocksstroem J (2010) Greening the global water system. J Hydrol 384:177–186

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn 27:787–813

    Article  Google Scholar 

  • Huang F, Xia ZQ, Li F, Wu TB (2013) Assessing sediment regime alteration of the upper Yangtze River. Environ Earth Sci 70:2349–2357. doi:10.1007/s12665-013-2381-4

    Article  Google Scholar 

  • IPCC (1996) Climate change 1995. The science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IWMI (2000) World’s water supply and demand 1995–2025. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  • Jiao WX, Xu ZM (2013) A distributed runoff model for the mountainous region of the Heihe River Basin (China) based on the spatial modeling environment (SME) II: model calibration and validation. Environ Earth Sci 69:2189–2197. doi:10.1007/s12665-012-2047-7

    Article  Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972

    Article  Google Scholar 

  • Lehner B, Henrichs T, Döll P, Alcamo J (2001) EuroWasser: model-based assessment of european water resources and hydrology in the face of global change. Kassel World Water Series 5. Wissenschaftliches Zentrum für Umweltsystemforschung, Universität Gesamthochschule Kassel, Kassel, Germany

  • Li FP, Xu ZX, Feng YC, Liu M, Liu WF (2013) Changes of land cover in the Yarlung Tsangpo River basin from 1985 to 2005. Environ Earth Sci 68:181–188. doi:10.1007/s12665-012-1730-z

    Article  Google Scholar 

  • Liu J, Yang H (2010) Spatially explicit assessment of global green and blue water uses in cropland. J Hydrol. doi:10.1016/j.jhydrol.2009.11.024

    Google Scholar 

  • Liu J, Zehnder AJB, Yang H (2007a) Historical trends in China’s virtual water trade. Water Int 32(1):78–90

    Article  Google Scholar 

  • Liu J et al (2007b) GEPIC: modelling wheat yield and crop water productivity with high resolution on a global scale. Agric Syst 94(2):478–493

    Article  Google Scholar 

  • Liu J, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45:W05428. doi:10.1029/2007WR006051

    Google Scholar 

  • Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB (2013a) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS ONE 8(2):e57750. doi:10.1371/journal.pone.0057750

    Article  Google Scholar 

  • Liu J, Zang C, Tian S, Liu J, Yang H, Jia S, You L, Liu B, Zhang M (2013b) Water conservancy projects in China: achievements, challenges and way forward. Glob Environ Change 23(3):633–643

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M and Lévy C (1998) OPA version 8.1 Ocean general circulation model reference manual, Notes du Pôle de Modélisation, Institut Pierre-Simon Laplace, no 11, pp 91 (Available from Laboratoire d’Océanographie Dynamique et de Climatologie, Université Paris VI, Paris 75252, France)

  • Nakićenović N et al (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

    Article  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes S, Viterbo P, Hagemann S, Haerter JO (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215

    Article  Google Scholar 

  • Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271(5250):785–788

    Article  Google Scholar 

  • Rockström J (1999) On-farm green water estimates as a tool for increased food production in water scarce regions. Phys Chem Earth Part B 24(4):375–383

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner SI, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteor Rep, 349, pp 127 (available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany)

  • Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405. doi:10.1029/2007WR006331

    Google Scholar 

  • Royer JF, Cariolle D, Chauvin F, Déqué M, Douville H, Hu RM, Planton S, Rascol A, Ricard JL, Salas-Mélia D, Sevault F, Simon P, Somot S, Tytéca S, Terray L, Valcke S (2002) Simulation des changements climatiques au cours du 21-ième siècle incluant l’ozone stratosphérique. C R Geophys 334:147–154

    Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172

    Article  Google Scholar 

  • Savenije HHG (2000) Water scarcity indicators; the deception of the numbers. Phys Chem Earth 25(3):199–204

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007a) Global impacts of conversion from natural to agricultural ecosystem on water resources: quantity versus quality. Water Resour Res 43:W03437

    Google Scholar 

  • Scanlon TS, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007b) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–212

    Article  Google Scholar 

  • Schmitz C, Lotze-Campen H, Gerten D, Dietrich JP, Biewald A, Bodirsky B, Popp A (2013) Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour Res 49:3601–3617

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJB (2008) Modeling blue and green water availability in Africa. Water Resour Res 44:W07406. doi:10.1029/2007WR006609

    Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate change. The physical science basis, Cambridge University Press, Cambridge, pp 996

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  • Vörösmarty CJ, Douglas EM, Green PA, Revenga C (2005) Geospatial indicators of emerging water stress: an application to Africa. Ambio 34(3):230–236

    Article  Google Scholar 

  • Weedon GP et al (2011) Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeol Dol. doi:10.1175/2011JHM1369.1

    Google Scholar 

  • Wigmosta MS, Vail L, Lettenmaier DP (1994) A distributed hydrology vegetation model for complex terrain. Water Resour Res 30:1665–1679

    Article  Google Scholar 

  • Xiao SC, Xiao HL, Peng XM, Tian QY (2014) Daily and seasonal stem radial activity of Populus euphratica and its association with hydroclimatic factors in the lower reaches of China’s Heihe River basin. Environ Earth Sci 72:609–621. doi:10.1007/s12665-013-2982-y

    Article  Google Scholar 

  • Yang H, Wang L, Zehnder AJB (2007) Water scarcity and food trade in the southern and eastern Mediterranean countries. Food Policy 32(5–6):585–605

    Article  Google Scholar 

  • Yao WY, Xu JX (2013) Impact of human activity and climate change on suspended sediment load: the upper Yellow River, China. Environ Earth Sci 70:1389–1403. doi:10.1007/s12665-013-2223-4

    Article  Google Scholar 

  • Yue TX et al (2013) Climate change trend in China, with improved accuracy. Clim Change 120:137–151

    Article  Google Scholar 

  • Zang C, Liu J, van der Velde M, Fraxner F (2012) Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in northwest China. Hydrol Earth Syst Sci 16(8):2859–2870

    Article  Google Scholar 

  • Zang C, Liu J, Jiang L, Gerten D (2013) Impacts of human activities and climate variability on green and blue water flows in the Heihe river basin in Northwest China. Hydrol Earth Syst Sci Discuss 10:9477–9504

    Article  Google Scholar 

  • Zhao QD, Ye BS, Ding YJ, Zhang SQ, Yi SH, Wang J, Shangguan DH, Zhao CC, Han HD (2013) Coupling a glacier melt model to the variable infiltration capacity (VIC) model for hydrological modeling in north-western China. Environ Earth Sci 68:87–101. doi:10.1007/s12665-012-1718-8

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the International Science & Technology Cooperation Program of China (2012DFA91530), funding from Robert Bosch Foundation within the project “Asian bridge: sustainable partner—partner for sustainability” (Grand No: 21.2.8003.0081.0), and the National Natural Science Foundation of China (41161140353, 91325302). The GCM data were obtained from the CERA database at the German Climate Computing Center (DKRZ) in Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Hagemann, S. & Liu, J. Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environ Earth Sci 74, 6381–6394 (2015). https://doi.org/10.1007/s12665-014-3782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3782-8

Keywords

Navigation