Skip to main content
Log in

Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina, was analyzed. Borehole sampling and chemical analyses were performed and evaluated based on the hydrogeological characteristics of the phreatic aquifer located in the coastal barrier, which is the only supply source to the population. Fe concentrations in groundwater fluctuate between 0.03 and 3.5 mg/L, with a mean value of 0.33 mg/L, whereas Mn varies between 0.03 and 1.20 mg/L, with a mean value of 0.24 mg/L. There is a relationship between the geomorphological environments and the distribution of major ions, except the case of Fe and Mn. The sand that constitutes the aquifer contains pyroxenes, amphiboles, biotite, Fe oxides and hydroxides, and volcanic groundmass stained by hydroxides, all of which are the source of Fe and Mn—whose concentrations are unrelated to each other, to Ph or to Eh due to a state of redox disequilibrium. Possible health risks due to Fe and Mn excess in water are considered. According to the international guidelines for Fe, 38 % of the samples exceed the acceptable values, while 33 % exceed the Argentine standards. As regards Mn, the samples with excess Mn are 53 and 38 %, respectively. Further groundwater quality monitoring and chemical studies are necessary, especially regarding the evolution of Fe and Mn contents. To offer an adequate supply of drinking water to the population, it is necessary to remove Fe and Mn so that the concentrations are within the drinking water guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apello CAJ, Postma D (2007) Geochemistry, groundwater and pollution. A.A Balkema publishers, Leiden

    Google Scholar 

  • ATSDR (2000) Toxicological profile for manganese. http://www.atsdr.cdc.gov/toxprofiles/tp151.html. Accessed 23 March 2013

  • Barbagallo J, Vizcaíno A, González Arzac R, Campos Alfonso F (1994) Hidroquímica de acuíferos costeros, San Clemente del Tuyú. Provincia de Buenos Aires, República Argentina. Águas Subterrâneas: Suplemento VIII Congreso Brasileiro de Águas Subterrâneas. http://www.aguassubterraneas.abas.org.asubterraneas/issue/view/1193. Accessed 17 March 2014

  • Barnes NA, Kehew AE, Krishnamurthy RV, Koretsky CM (2011) Redox evolution in glacial drift aquifers: role of diamicton units in reduction of Fe(III). Environ Earth Sci 62:1027–1038. doi:10.1007/s12665-010-0590-7

    Article  Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviours: pilot study of school age children exposed through tap water. Environ Health Perspect 115:122–127

    Article  Google Scholar 

  • Carretero S (2011) Comportamiento hidrológico de las dunas costeras en el sector nororiental de la provincia de Buenos Aires [Hydrological behavior in the Northeastern coast of Buenos Aires province] Doctoral Thesis. Facultad de Ciencias Naturales y Museo, La Plata. Argentina. http://sedici.unlp.edu.ar/handle/10915/4918. Accessed 15 February 2013

  • Carretero S, Kruse E (2010) Areal exploitation of groundwater in coastal dunes, Buenos Aires. Argentina. In: Paliwal BS (ed) Global groundwater resources and management. Scientific Publishers (India), Jodhpur, pp 385–398

    Google Scholar 

  • Carretero S, Kruse E (2012) Relationship between precipitation and water-table fluctuation in a coastal dune aquifer: northeastern coast of the Buenos Aires province, Argentina. Hydrogeol J 20:1613–1621. doi:10.1007/s10040-012-0890-y

    Article  Google Scholar 

  • Carretero S, Dapeña C, Kruse E (2013) Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer in the northeastern coast of the province of Buenos Aires, Argentina. Isot Environ Health Stud 49(3):399–419. doi:10.1080/10256016.2013.776557

    Article  Google Scholar 

  • Catalán Lafuente JG (1969) Química del agua. Blume, Madrid

    Google Scholar 

  • Chidambaram S, Karmegam U, Prasanna MV, Sasidhar P, Vasanthavigar M (2011) A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environ Earth Sci 64:1419–1431. doi:10.1007/s12665-011-0966-3

    Article  Google Scholar 

  • Consejo Federal de Inversiones (1990) Evaluación del Recurso Hídrico Subterráneo de la Región Costera Atlántica de la Provincia de Buenos Aires Región I Punta Rasa-Punta Médanos.Informe Final. Tomo I Hidrología Subterránea. CFI, Buenos Aires

    Google Scholar 

  • Custodio E, Llamas MR (1996) Hidrología Subterránea. Omega, Barcelona

    Google Scholar 

  • Daughney CJ (2003) Iron and manganese in New Zealand’s groundwater. J Hydrol (NZ) 42(1):11–26

    Google Scholar 

  • EU (1998) Drinking Water Directive. Council Directive 98/83/EC on the quality of water intented for human consumption. http://eurlex.europa.eu/LexUriServ/LexUriServdo?uri=OJ:L:1998:330:0032:0054:EN:PDF. Accessed 17 June 2013

  • Hem JD (1985) Study and Interpretation of the Chemical Characteristics of Natural Water. Third Edition US Geological Survey Water-Supply Paper 2254. United States Government Printing Office, USA

  • INDEC (2010) Censo Nacional de Población, Hogares y Viviendas. http://www.censo2010.indec.gov.ar/. Accessed 23 July 2012

  • Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos T (1989) Possible health effects of high manganese concentrations in drinking water. Arch Environ Health 44:175–178

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey

    Google Scholar 

  • Lindhurg RE, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225:925–927

    Article  Google Scholar 

  • Mauriño V (1956) Los sedimentos psamíticos actuales de la región costera comprendida entre Faro Recalada y Faro Monte Hermoso. LEMIT Serie II 61:1–35

    Google Scholar 

  • Mazzoni MM (1977) Características composicionales de la fracción pesados de arenas de playa frontal del litoral atlántico bonaerense. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología. Tomo III no. 3–4:73–91

  • Ministerio de Agricultura, Ganadería, Pesca y Alimentos (2007) Código Alimentario Argentino. Decreto 815/1999 y 4238/1968, resolución 68/2007 y 196/2007. http://www.alimentosargentinos.gov.ar/contenido/marco/marco2.php. Accessed 22 May 2013

  • Ramesh R, Shiv Kumar K, Eswaramoorthi S, Purvaja GR (1995) Migration and contamination of major and trace elements in groundwater of Madras City, India. Environ Geol 25:126–136

    Article  Google Scholar 

  • Spalletti LA, Mazzoni MM (1979) Caracteres granulométricos de arenas de playa frontal, playa distal y médano litoral atlántico bonaerense. Rev Asoc Geol Arg 34:12–30

    Google Scholar 

  • Teruggi ME, Chaar E, Remiro JR, Limousin T (1959) Las arenas de la costa de la provincia de Buenos Aires entre Cabo San Antonio y Bahía Blanca. LEMIT Serie II 77:1–37

    Google Scholar 

  • USEPA (2003) National secondary drinking water regulations. USEPA 816-F-03-016. http://www.U.S.EPA.gov/safewater/contaminants/index.html#sec. Accessed 20 May 2013

  • USEPA (2004) Drinking water health advisory for manganese. http://www.U.S.EPA.gov/safewater/ccl/pdfs/reg_determine1/support_cc1_magnese_dwreport.pdf. Accessed 20 May 2013

  • Violante RA, Parker G (2000) El Holoceno en las regiones marinas y costeras del nordeste de la provincia de Buenos Aires. Rev Asoc Geol Arg 55:337–351

    Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129

    Google Scholar 

  • Weng H-X, Qin Y-Ch, Chen X-H (2007) Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China. Hydrogeol J 15:715–726

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking water quality. Final task group meeting. WHO Press. World Health Organization, Geneva

    Google Scholar 

  • Yuce G, Alptekin C (2013) In situ and laboratory treatment tests for lowering of excess manganese and iron in drinking water sourced from river–groundwater interaction. Environ Earth Sci. doi:10.1007/s12665-013-2343-x

    Google Scholar 

  • Zhang Y, Sun J, Huang G, Jing J, Liu J, Zhang Y (2010) Natural background levels of Fe and Mn in groundwater of Pearl River Delta. International conference on digital manufacturing and automation 978-0-7695-4286-7/10. IEEE Computer Society. pp 972–997. doi:10.1109/ICDMA.2010.288. Accessed 6 April 2013

Download references

Acknowledgments

The authors are indebted to the Consejo Nacional de Investigaciones Científicas y Técnicas (Nacional Council for Scientific and Technological Research) of Argentina for financially supporting this study by means of the Grant PIP 0403/13. We would also like to thank Lic. Marcos Macchioli Grande for his contribution to this work, as well as the reviewers and editors for the valuable comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina Carretero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carretero, S., Kruse, E. Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina. Environ Earth Sci 73, 1983–1995 (2015). https://doi.org/10.1007/s12665-014-3546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3546-5

Keywords

Navigation