Skip to main content

Advertisement

Log in

Evaluating groundwater resource of an urban alluvial area through the development of a numerical model

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

As established in the European Water Framework Directive, the development of groundwater numerical models is fundamental for adopting water management plans aimed at preserving the water resource and reducing environmental risks. In this paper, authors present a methodology for the estimation of groundwater resource of an alluvial valley, in an urban area characterized by a complex hydrostratigraphic setting and scarcity of hydrogeological data; the study area is the urban and sub-urban area of Rome (Italy). A previous, elaborated hydrostratigraphic model set the base for the development of 3D, steady state, sub-basin scale numerical model, implemented by the finite-difference code MODFLOW 2000®; the water system components were derived by elaboration of available data. The alluvial aquifer of the Tiber River Valley, which runs in the middle of the City in a NNW–SE direction, has been analyzed in detail, since it is covered by a densely populated area hosting most of Rome’s historical heritage, and it is characterized by low quality geotechnical parameters. Results suggest that in areas with high hydrostratigraphic complexity and scarcity of hydrogeological data, a sub-basin scale, and steady-state numerical model can be very helpful to verify the conceptual model and reduce the uncertainty on the water budget components. The proposed steady-state model constitutes the base for future applications of transient state and local scale models, required for sustainable water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • ACEA-ATO2 (1996) Annual statistic report. http://www.ato2roma.it/DOCUMENTI/articoli/cons1binder.pdf. Retrieved on January 2013

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic Press, San Diego

    Google Scholar 

  • Bonomi T, Cavallin A (1997) Application of a hydrogeological model to analyze and manage groundwater processes in the urban environment: a case study in the Milan area, Italy. In: Chilton et al. (ed) Groundwater in the urban area: problems, processes and management. 17th Congress International Association of Hydrogeologists (IAH), 21–27 September 1997, Nottingham, pp 91–96

  • Bozzano F, Caserta A, Govoni A, Marra F, Martino S (2008) Static and dynamic characterization of alluvial deposits in the Tiber River Valley: new data for assessing potential ground motion in the City of Rome. J Geophys Res. doi:10.1007/s001090000086

    Google Scholar 

  • Campolunghi MP, Capelli G, Funiciello R, Lanzini M (2007) Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy). Eng Geol 89(1–2):9–35

    Article  Google Scholar 

  • Capelli G, Mazza R, Gazzetti C (2005) Strumenti e strategie per la tutela e l’uso compatibile della risorsa idrica nel Lazio. Gli acquiferi vulcanici. Volume 78 di Quaderni di tecniche di protezione ambientale Editore Pitagora, ISBN8837114508, 9788837114503

  • Capelli G, Mazza R, Taviani S (2008) Acque sotterranee nella città di Roma (Groundwater in the city of Rome). In: Funiciello R, Praturlon A, Giordano G (eds) La geologia di Roma: dal centro storico alla periferia. Mem Desc della Carta Geologica d’Italia LXXX, pp 221–245

  • Capelli G, Mastrorillo L, Mazza R, Petitta M, Baldoni T, Banzato F, Cascone D, Di Salvo C, La Vigna F, Taviani S, Teoli P, (2012), Carta Idrogeologica del Territorio della Regione Lazio, scala 1:100.000 (4 fogli). Regione Lazio, SELCA Firenze

  • Catasto Nazionale delle Cavità Artificiali. 2013 http://catastoartificiali.speleo.it/applications/1.0/index.php, SocietàSpeleologicaItaliana. Retrieved January 2013

  • Chatterjee R, Gupta BK, Mohiddin SK, Singh PN, Shekhar S, Purohit R (2009) Dynamic groundwater resources of National Capital Territory, Delhi: assessment, development and management options. Environ Earth Sci 59–3:669–686. doi:10.1007/s12665-009-0064-y

    Article  Google Scholar 

  • Ciotoli G, Stigliano F, Marconi F, Moscatelli M, Mancini M, Cavinato GP (2011) Mapping the anthropic backfill of the historical centre of Rome (Italy) by using Intrinsic Random Functions of order k (IRF-K). In: Murgante B, Gervasi O, Iglesias A, Taniar D, Apoluhan BO (eds) Computational sciences and its applications, ICCSA 2011 part I, proceedings of the 11th international conference, Santander Spain June 20–23 2011. Lecture Notes in Computer Science, Springer, Berlin

  • Conato V, Esu D, Malatesta A, Zarlenga F (1980) New data on the Pleistocene of Rome. Quaternaria 22:131–176

    Google Scholar 

  • Corazza A, Lombardi L (1995) Idrogeologia dell’area del centro storico di Roma. In: Funiciello R (ed) Memorie descrittive della carta geologica d’Italia, La geologia di Roma. Istituto Poligrafico e Zecca dello Stato, Rome, pp 179–211

    Google Scholar 

  • Dearden RA, Marchant A, Royse K (2013) Development of a suitability map for infiltration sustainable drainage systems (SuDS). Environ Earth Sci 70(6):2587–2602. doi:10.1007/s12665-013-2301-7

    Article  Google Scholar 

  • Di Salvo C (2011) Implementation of groundwater numerical models in geological contexts of urban areas. Ph.D. thesis, University of Rome “Roma Tre”, Italy

  • Di Salvo C, Di Luzio E, Moscatelli M, Capelli G, Cavinato GP, Mancini M, Mazza R (2012) GIS-based hydrogeological modeling in the city of Rome: analysis of the geometric relationships between a buried aquifer in the Tiber valley and the confining hydrogeological complexes. Hydrogeol J 20:1549–1567. doi:10.1007/s10040-012-0899-2

    Article  Google Scholar 

  • European Commission (2004) Groundwater risk assessment report. Common Implementation Strategy for the Water Framework Directive-2000/60/EC, Technical report on groundwater risk assessment issues as discussed at the workshop of 28th January 2004, 12 October 2004

  • European Commission (2009) Guidance groundwater status and trend assessment. Common Implementation Strategy for the Water Framework Directive-2000/60/EC, Guidance document no. 18. ISSN 1725-1087

  • European Commission (2011) Guidance on risk assessment and the use of conceptual models for groundwater. Common Implementation Strategy for the Water Framework Directive-2000/60/EC, Guidance document no. 26. doi:10.2779/53333

  • Eyles N, Meriano M, Chow-Fraser P (2013) Impacts of European settlement (1840-present) in a Great Lake watershed and lagoon: Frenchman’s Bay, Lake Ontario, Canada. Environ Earth Sci 68–8:2211–2228. doi:10.1007/s12665-012-1904-8

    Article  Google Scholar 

  • Funiciello R, Giordano G (2008) The geological Map of Rome: lithostratigraphy and stratigraphic organization. In: Funiciello R, Praturlon A, Giordano G (eds) La geologia di Roma. Dal centro storico alla periferia II. Mem Desc Carta Geologica d’Italia, vol 80, pp 39–85

  • Grimmond CSB, Oke TR (1991) An evapotranspiration–interception model for urban areas. Water Resour Res 27:1739–1755

    Article  Google Scholar 

  • Gustafsson LG, Winberg S, Refsgaard A (1997) Toward a distributed physically based model description of the urban aquatic environment. Water Sci Technol 36:89–93

    Article  Google Scholar 

  • Halford KJ, Hanson RT (2002) User guide for the drawdown-limited, multi-node well (MNW) package for the U.S. Geological Survey’s Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, Versions MODFLOW-96 and MODFLOW-2000, Open-File report 02-293, U.S. Geological Survey

  • Hantush MS (1956) Analysis of data from pumping tests in leaky aquifers. Am Geophys Union Trans 37(6):702–714

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. USGS Open-File Report 00-92. Reston, Virginia: U.S. Geological Survey

  • Hassan A (2003) A validation process for the groundwater flow and transport model of the faultless nuclear test at Central Nevada Test area, Publication No. 45197. Nevada site Office National Nuclear Security Administration U.S. Department of Energy, Las Vegas, Nevada

  • Hill M (1998) Methods and guidelines for effective model calibration. Water-Resources Investigations Report 98-4005

  • Hunt B (1985) Flow to a well in a multiaquifer system. Water Resour Res 21(11):1637–1641

    Article  Google Scholar 

  • Istituto Idrografico e Mareografico della Regione Lazio (Hydrographic and Mareographic Institute of Latium Region). 2013. Centro Funzionale Regionale. http://www.idrografico.roma.it/std_page.aspx?Page=bollettini. Accessed 26 Jan 2013

  • Jeppesen J, Christensen S, Lyngs Ladekarl U (2011) Modelling the historical water cycle of the Copenhagen area 1850–2003. J Hydrol 404(3–4):117–129

    Article  Google Scholar 

  • Jusseret S, Tam VT, Dassargues A (2009) Groundwater flow modelling in the central zone of Hanoi, Vietnam. Hydrogeol J 17(4):915–934. doi:10.1007/s10040-008-0423-x

    Article  Google Scholar 

  • Karner DB, Marra F, Renne P (2001) The history of the Monti Sabatini and Alban Hills Volcanoes: groundwork for assessing volcanic-tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219

    Article  Google Scholar 

  • La Vigna F, Ciadamidaro S, Mazza R, Mancini L (2010) Water quality and relationship between superficial and ground water in Rome (Aniene River basin, central Italy). Environ Earth Sci 60:1267–1279. doi:10.1007/s12665-009-0267-2

    Article  Google Scholar 

  • Lerner DN (1986) Leaking pipes recharge ground water. Ground Water 24(5):654–662

    Article  Google Scholar 

  • Lerner DN (1990) Groundwater recharge in urban areas. Atmos Environ Part B Urban Atmos 24(1):29–33

    Article  Google Scholar 

  • Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10(1):143–152

    Article  Google Scholar 

  • Lerner DN (ed) (2003) Urban groundwater pollution. A.A. Balkema Publishers, The Netherlands, pp 299

    Google Scholar 

  • Marchant AP, Banks VJ, Royse K, Quigley SP, Wealthall GP (2011) An initial screening tool for water resource contamination due to development in the Olympic Park 2012 site, London. Environ Earth Sci 64–2:483–495. doi:10.1007/s12665-010-0872-0

    Article  Google Scholar 

  • Marra F, Rosa C (1995) Stratigrafia e assetto geologico dell’area romana (Stratigraphy and geological setting of Rome). In: Funiciello R (ed) La geologia di Roma. Il centro storico. Mem Desc della Carta Geologica d’Italia, vol 50, pp 49–118

  • Marra F, Rosa C, De Rita D, Funiciello R (1998) Stratigraphic and tectonic features of the Middle Pleistocene sedimentary and volcanic deposits in the area of Rome (Italy). Quat Intern 47(48):51–63

    Article  Google Scholar 

  • Martínez-Santos P, Martínez-Alfaro PE, Sanz E, Galindo A (2010) Daily scale modelling of aquifer–river connectivity in the urban alluvial aquifer in Langreo, Spain. Hydrogeol J 18:1525–1537. doi:10.1007/s10040-010-0613-1

    Article  Google Scholar 

  • Martìnez-Santos P, Pedretti D, Martínez-Alfaro PE, Conde M, Casado M (2010) Modeling the effects of groundwater-based urban supply in low-permeability aquifers: application to the Madrid aquifer, Spain. Water Resour Manag 24(15):4613–4638. doi:10.1007/s11269-010-9682-0

    Article  Google Scholar 

  • Mazza R, La Vigna F, Alimonti C (2014) Evaluating the available regional groundwater resources using the distributed hydrogeological budget, Water Resour Manag 28. doi:10.1007/s11269-014-0513-6

  • Milli S (1997) Depositional setting and high frequency sequence stratigraphy of the Middle–Upper Pleistocene to Holocene deposits of the Roman Basin. Geol Rom 33:99–136

    Google Scholar 

  • Mitchell VG, Mein RG, McMahon TA (2001) Modelling the urban water cycle. J Environ Model Softw 16(7):615–629

    Article  Google Scholar 

  • Mitchell VG, McMahon TA, Mein RG (2003) Components of the total water balance of an urban catchment. Environ Manag 735–746. doi:10.1007/s00267-003-2062-2

  • Moscatelli M, Piscitelli S, Piro S, Stigliano F, Giocoli A, Zamuner D, Marconi M (2013) Integrated geological and geophysical investigations to characterize the anthropic layer of the Palatine hill and Roman Forum (Rome, Italy). Bull Earthq Eng (in press). doi:10.1007/s10518-013-9460-5

  • Neuman SP, Witherspoon PA (1969) Theory of flow in a confined two aquifer system. Water Resour Res 5(4):803–816

    Article  Google Scholar 

  • Papadopulos IS (1966) Nonsteady flow to multiaquifer wells. J Geophys Res 71(20):4791–4797

    Article  Google Scholar 

  • Ragab R, Bromley J, Rosier P, Cooper JD, Gash JH (2003a) Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: the effect of slope and aspect. Hydrol Process 17(2003a):2409–2422. doi:10.1002/hyp.1250

    Article  Google Scholar 

  • Ragab R, Rosier P, Dixon A, Bromley J, Cooper JD (2003b) Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation. Hydrol Process 17(2003b):2423–2437. doi:10.1002/hyp.1251

    Article  Google Scholar 

  • Raspa G, Moscatelli M, Stigliano F, Patera A, Marconi F, Folle D, Vallone R, Mancini M, Cavinato GP, Milli S, Coimbra JF, Costa L (2008) Geotechnical characterization of the upper Pleistocene–Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: cross-validation results. Eng Geol 101:251–268. doi:10.1016/j.enggeo.2008.06.007

    Article  Google Scholar 

  • Rivello E (2008) Roma, loc. Settebagni via Salaria km 14. Impianto idraulico. Intervento 2005. FOLD&R: 116

  • Rodriguez F, Andrieu H, Creutin JD (2003) Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. J Hydrol 283(1–4):146–168. doi:10.1016/S0022-1694(03)00246-4

    Article  Google Scholar 

  • Seifert D, Sonnenborg OT, Scharling P, Hinsby K (2008) Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol J 16:659–674

    Article  Google Scholar 

  • Sharp JM, Christian LN, Garcia-Fresca B, Pierce SA, Wiles TJ (2006) Changing recharge and hydrogeology in an urbanizing area—example of Austin, Texas, USA. Philadelphia Annual Meeting (22–25 October 2006), Geological Society of America, Abstracts with Programs, vol 38, no. 7, pp 289

  • Sonnenborg TO, Christensen BSB, Nyegaard P, Henriksen HJ, Refsgaard JC (2003) Transient modeling of regional groundwater flow using parameter estimates from steady-state automatic calibration. J Hydrol 273:188–204

    Article  Google Scholar 

  • Takem GE, Chandrasekharam D, Ayonghe SN, Thambidurai P (2010) Pollution characteristics of alluvial groundwater from springs and bore wells in semi-urban informal settlements of Douala, Cameroon, Western Africa. Environ Earth Sci 61–2:287–298. doi:10.1007/s12665-009-0342-8

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: American Geophysical Union Transactions, 16th Annual Meeting, pt. 2, pp 519–524

  • Vazquez-Suñè E, Sanchez-Vila X, Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13:522–533

    Article  Google Scholar 

  • Water Framework Directive Ireland (2005) Guidance on the assessment of the impact of groundwater abstractions, Guidance Document no. GW5. http://www.wfdireland.ie/docs/31_RiskAssessments/Groundwater%20Risk%20Assessment/GW5%20Abstraction%20Pressures.pdf. Accessed 15 February 2013

  • WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. http://europa.eu.int/eur-lex/pri/es/oj/dat/2000/l_327/l_32720001222es00010072.pdf

  • Wolf L, Klinger J, Hoetzl H, Mohrlok U (2007) Quantifying mass fluxes from urban drainage systems to the urban soil-aquifer system. J Soils Sediment 7(2):85–95. http://dx.doi.org/10.1065/jss2007.02.207

    Google Scholar 

  • Yang Y, Lerner DN, Barrett MH, Tellam JH (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198

    Article  Google Scholar 

Download references

Acknowledgments

The present study was carried out in the framework of the UrbiSIT project, led by the CNR-IGAG (Institute of Environmental Geology and Geoengineering of the National Research Council of Italy) in collaboration with the University of Rome “Roma Tre”. The UrbiSIT project was promoted and funded by the National Civil Protection Department (DPC) in order to create tools and guidelines for geohazard assessment in urban areas. This paper is part of the Ph-D thesis of Cristina Di Salvo. Authors would like to thank F. Marconi and F. Pennica for their help in ArcGIS and database management. Authors are also grateful to all people working in the LINQ- Laboratorio di Idrogeologia Numerica e Quantitativa, Dipartimento Scienze Geologiche, Università Roma Tre for providing hydrogeological data. Authors wish also to thank prof. Daniel T. Feinstein (University of Winsconsin-Milwaukee and USGS) for his precious support in the development of the numerical model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Salvo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Salvo, C., Moscatelli, M., Mazza, R. et al. Evaluating groundwater resource of an urban alluvial area through the development of a numerical model. Environ Earth Sci 72, 2279–2299 (2014). https://doi.org/10.1007/s12665-014-3138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3138-4

Keywords

Navigation