Skip to main content

Advertisement

Log in

A geological database for parameterization in numerical modeling of subsurface storage in northern Germany

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Underground land use can play a significant role in future concepts of energy and gas storage and requires an improved understanding of the parameters of potential storage formations (saline aquifers), for instance of porosity and permeability, and also of mineralogical and gas compositions. This study aims at providing data examples and calculating vertical spatial variations through variogram analyses of important North German geological reservoirs from Dogger, Rhaetian, Middle Buntsandstein, and Rotliegend (Sub)Groups and Formations, focusing on the western part of the North German Basin. Vertical correlation lengths of porosity and permeability data range between 0 and 30 m, while most results are calculated at approximately 2–4 m and do not show relevant differences among the evaluated formations. In the majority of the regarded formations, the Kozeny–Carman relationship between porosity and permeability is supported as long as low porosity and permeability values are excluded from the evaluation. Mineral percentages varied significantly among the evaluated sediments. Besides quartz, ankerite is the main compound in the Dogger Group, while feldspars and clay minerals were more frequent in the Rhaetian, Middle Buntsandstein, and Rotliegend sediments. Methane was the main gas compound in the reservoirs, followed by nitrogen, ethane, and carbon dioxide. This study serves as preparatory work to allow for the parameterization of geological models and a subsequent simulation of fluid transport to evaluate (long-term) safety and impacts of geothermal and gas storage projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitchison J (2003) A concise guide to compositional data analysis. University of Glasgow, Glasgow

    Google Scholar 

  • Ambrose WA, Lakshminarasimhan S, Holtz MH, Núñez-López V, Hovorka SD, Duncan I (2008) Geologic factors controlling CO2 storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ Geol 54:1619–1633. doi:10.1007/s00254-007-0940-2

    Article  Google Scholar 

  • Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279. doi:10.1016/0196-8904(94)90060-4

    Article  Google Scholar 

  • Barnes RJ (1991) Teachers aide: the variogram sill and the sample variance. Math Geol 23:673–678

    Article  Google Scholar 

  • Bauer S, Class H, Ebert M, Feeser V, Götze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67:351–367. doi:10.1007/s12665-012-1707-y

    Article  Google Scholar 

  • Benisch K, Bauer S (2011) Investigation of large-scale pressure propagation and monitoring for CO2 injection using a real site model. In: ModelCARE 2011. Models—repositories of knowledge, vol. 355. IAHS Publication, Leipzig, pp 245–251 (2012), 18–22 Sep 2011

  • Beutler G (2005) Stratigraphie von Deutschland IV—Keuper. In: Deutsche Stratigraphische Kommission, Courier Forschungsinstitut Senckenberg, Frankfurt

  • Bonte M, Stuyfzand PJ, Hulsmann A, Van Beelen P (2011) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16(1)

  • Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90:11524–11532

    Article  Google Scholar 

  • Brandes J, Obst K (2011) Geological characterization of potential reservoir and barrier rock units in Mecklenburg-Western Pomerania. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:61–81

    Google Scholar 

  • Carman PC (1956) Flow of gases through porous media. Butterworths, London

    Google Scholar 

  • Costa A (2006) Permeability–porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:1–5

    Article  Google Scholar 

  • Esposito A, Benson SM (2012) Evaluation and development of options for remediation of CO2 leakage into groundwater aquifers from geologic carbon storage. Int J Greenh Gas Control 7:62–73. doi:10.1016/j.ijggc.2011.12.002

    Article  Google Scholar 

  • Flett M, Gurton R, Weir G (2007) Heterogeneous saline formations for carbon dioxide disposal: impact of varying heterogeneity on containment and trapping. J Petrol Sci Eng 57:106–118. doi:10.1016/j.petrol.2006.08.016

    Article  Google Scholar 

  • Franz M, Wolfgramm M (2008) Sedimentologie, Petrologie und Fazies geothermischer Reservoire des Norddeutschen Beckens am Beispiel der Exter-Formation (Oberer Keuper, Rhaetium) NE-Deutschlands. Z Geol Wiss 36:223–247

    Google Scholar 

  • Fuchs S, Förster A (2010) Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chem Erde 70:13–22

    Article  Google Scholar 

  • Geluk MC, Röhling HG (1997) High resolution sequence stratigraphy of the Lower Triassic “Buntsandstein” in the Netherlands and northwestern Germany. Geol Mijnbouw 76:227–246

    Article  Google Scholar 

  • Giese LB, Seibt A, Wiersberg T, Zimmer M, Erzinger J, Niedermann S, Pekdeger A (2002) Geochemistry of the formation fluids (Geochemie der Formationsfluide). In: Huenges E (ed) In-situ geothermal laboratory Groß Schönebeck: drilling, logging, hydraulic test, formation fluids and clay minerals. STR02/14 Geothermie Report 02-1. GeoForschungsZentrum Potsdam, Potsdam, pp 145–170

    Google Scholar 

  • Götze J (1998) Geochemistry and provenance of the Altendorf feldspathic sandstone in the Middle Bunter of the Thuringian Basin (Germany). Chem Geol 150:43–61

    Article  Google Scholar 

  • Gringarten E, Deutsch CV (2001) Variogram interpretation and modeling. Math Geol 33:507–534

    Article  Google Scholar 

  • GTN (1997) Machbarkeitsstudie zum Einsatz geothermischer Ressourcen in der Wärmeversorgung von Hamburg. Geothermie Neubrandenburg GmbH, Neubrandenburg, p 39

    Google Scholar 

  • Horn D (1964) Fazies, Diagenese und Ölmigration im Dogger-Beta-Hauptsandstein von Plön-Ost und Preetz (Ostholsteinischer Juratrog). Doctoral thesis (dissertation). Christian-Albrechts-Universität zu Kiel, Kiel

  • Hoth P, Seibt A, Kellner T (1997) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrothermaler Ressourcen in Norddeutschland. Geoforschungszentrum Potsdam, Potsdam

    Google Scholar 

  • Hovorka SD, Doughty C, Benson SM, Pruess K, Knox PR (2004) The impact of geological heterogeneity on CO2 storage in brine formations: a case study from the Texas Gulf Coast. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. The Geological Society of London, London, pp 147–163

    Google Scholar 

  • Kaufhold H, Hable R, Liebsch-Dörschner T, Thomsen C, Taugs R (2011) Distribution and properties of Mesozoic sandstones and barrier rocks in Schleswig–Holstein and Hamburg—basic information possible energetic utilisation of the deeper subsurface. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:38–60

    Google Scholar 

  • Kempka T, Kühn M, Class H, Frykman P, Kopp A, Nielsen CM, Probst P (2010) Modelling of CO2 arrival time at Ketzin—part I. Int J Greenh Gas Control 4:1007–1015. doi:10.1016/j.ijggc.2010.07.005

    Article  Google Scholar 

  • Knopf S, May F, Müller C, Gerling P (2010) Neuberechnung möglicher Kapazitäten zur CO2-Speicherung in tiefen Aquifer-Strukturen. Energiewirtschaftliche Tagesfragen 60:76–80

    Google Scholar 

  • Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinf 6:225–244

    Google Scholar 

  • Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber. Akad. Wiss., Wien: 136(2a):271–306

    Google Scholar 

  • Kushnir R, Ullmann A, Dayan A (2012) Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review. Rev Chem Eng 28:123–148. doi:10.1515/revce-2012-0006

    Article  Google Scholar 

  • Laier T, Nielsen BL (1989) Cementing halite in Triassic Bunter sandstone (Tønder, southwest Denmark) as a result of hyperfiltration of brines. Chem Geol 76:353–363. doi:10.1016/0009-2541(89)90103-4

    Article  Google Scholar 

  • Lee KS (2010) A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies 3:1320–1334. doi:10.3390/en3061320

    Article  Google Scholar 

  • Lemieux JM (2011) Review: the potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19:757–778. doi:10.1007/s10040-011-0715-4

    Article  Google Scholar 

  • Lengler U, De Lucia M, Kühn M (2010) The impact of heterogeneity on the distribution of CO2: numerical simulation of CO2 storage at Ketzin. Int J Greenh Gas Control 4:1016–1025. doi:10.1016/j.ijggc.2010.07.004

    Article  Google Scholar 

  • Li X-Y, Logan BE (2001) Permeability of fractal aggregates. Water Res 35:3373–3380

    Article  Google Scholar 

  • Malakooti R, Azin R (2011) The optimization of underground gas storage in a partially depleted gas reservoir. Petrol Sci Technol 29:824–836. doi:10.1080/10916460903486742

    Article  Google Scholar 

  • Martens S, Kempka T, Liebscher A, Lüth S, Möller F, Myrttinen A, Norden B, Schmidt-Hattenberger C, Zimmer M, Kühn M, The Ketzin Group (2012) Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ Earth Sci 67:323–334

    Article  Google Scholar 

  • McCann T (1998) Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sed Geol 116:177–198. doi:10.1016/s0037-0738(97)00106-1

    Article  Google Scholar 

  • Mitiku AB, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci. doi:10.1007/s12665-013-2580-z

  • Panfilov M (2010) Underground storage of hydrogen: in situ self-organisation and methane generation. Transp Porous Media 85:841–865. doi:10.1007/s11242-010-9595-7

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado (2007) In: Lecture notes on compositional data analyses. University of Girona, Girona, p 87

  • Pfeiffer WT (2012) Einfluss von kleinskaligen geologischen Strukturen auf die Phasenausbreitung von CO2 in tiefen salinaren Formationen. MSc Thesis. Institute of Geosciences, Christian-Albrechts-University, Kiel

  • Plein E (1995) Stratigraphie von Deutschland: Norddeutsches Rotiegendbecken. Courier Forschungsinstitut Senckenberg, Frankfurt (p 193)

    Google Scholar 

  • Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746

    Google Scholar 

  • Reimann C, Filzmoser P, Fabian K, Hron K, Birke M, Demetriades A, Dinelli E, Ladenberger A (2012) The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Sci Total Environ 426:196–210

    Article  Google Scholar 

  • Reinhold K, Müller C (2011) Storage potential in the deeper subsurface—overview and results from the project storage catalogue of Germany. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 74:9–27

    Google Scholar 

  • Reinhold K, Müller C, Riesenberg C (2011) Informationssystem Speichergesteine für den Standort Deutschland—Synthese. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover (p 133)

    Google Scholar 

  • Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegrad J 15:453–465

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003) Salt movements in the Northeast German Basin and its relation to major post-permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics 361:277–299

    Article  Google Scholar 

  • Schnaar G, Digiulio DC (2009) Computational modeling of the geologic sequestration of carbon dioxide. Vadose Zone J 8:389–403

    Article  Google Scholar 

  • Sedlacek R (2009) Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle 125:412–425

    Google Scholar 

  • Seibt A, Kellner T, Hoth P, Teil B (1997) Geowissenschaftliche Erfahrungen aus dem Betrieb geothermischer Heizzentralen Norddeutschlands; 8. Charakteristik der geothermischen Heizzentralen (GHZ) in Mecklenburg-Vorpommern. In: Schneider H, Huenges E (eds) Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrogeothermaler Ressourcen in Norddeutschland. STR97/15 Geothermie report 97-1. GeoForschungsZentrum Potsdam, Potsdam, pp 135–150

    Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • von Engelhart W (1960) Der Porenraum der Sedimente. Springer Verlag, Berlin/Göttingen/Heidelberg

    Book  Google Scholar 

  • Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter sandstone, North German Basin. Sed Geol 169:129–149

    Article  Google Scholar 

  • Wolfgramm M, Rauppach K, Seibt P (2008) Reservoir-geological characterization of Mesozoic sandstones in the North German Basin by petrophysical and petrographical data. Z Geol Wiss 36:249–265

    Google Scholar 

  • Ziegler PA (1990) Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij, UK

    Google Scholar 

Download references

Acknowledgments

This study was funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding GmbH and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. We especially thank Mr. Grundmeier from the “Wirtschaftsverband Erdöl-Erdgas (WEG)” and the ExxonMobil Production Germany GmbH for their cooperation and data supply. Special thanks also go to Dr. Brauner (LBEG Hannover) for his kind support with data transfers and organization and two anonymous reviewers focusing their recommendation on the regional geology and on the geostatistical evaluation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dethlefsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dethlefsen, F., Ebert, M. & Dahmke, A. A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environ Earth Sci 71, 2227–2244 (2014). https://doi.org/10.1007/s12665-013-2627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2627-1

Keywords

Navigation