Skip to main content
Log in

Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: comparison with field data and crop model simulations

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Plant water uptake is a crucial process linking water fluxes in the soil–plant–atmosphere continuum. Soil water extraction by roots affects the dynamics and distribution of soil moisture. Water supply of plants controls transpiration, which makes up for an important fraction of the energy balance at the land surface, and influences soil–vegetation–atmosphere feedback processes. Therefore, efficient algorithms for an accurate estimation of root water uptake are essential in land-surface models that are coupled with climate models, in agricultural crop models that predict water budget and plant growth at the field and plot scale, and in hydrological models. Due to different purposes and demands on computational time, the degree of detail in representing belowground processes varies considerably between these model types. This study investigates the impact of the degree of detail in process descriptions of root growth and water uptake and of information about soil hydraulic properties on simulated seasonal patterns of evapotranspiration and soil moisture in a field study with winter wheat (Triticum aestivum L. cv. Cubus). Evapotranspiration was well simulated by CLM3.5 until the beginning of crop senescence, but it overestimates the water flux through plants in the last three weeks of the vegetation period and showed a lower performance in simulating soil moisture compared to crop models. The best simultaneous fit of soil moisture and latent heat flux was achieved by the crop model XN-SPASS, which consists of the most detailed representation of root growth dynamics. The results indicate the importance of implementing improved belowground process descriptions for advanced simulations with coupled hydrological and atmospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biernath C, Gayler S, Klein C, Bittner S, Högy P, Fangmeier A, Priesack E (2011) Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. Eur J Agron 35:71–82

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z-L (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15:3123–3149

    Article  Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014

    Article  Google Scholar 

  • Braun FJ, Schädler G (2005) Comparison of soil hydraulic parameterizations for mesoscale meteorological models. J Appl Meteorol 44(7):1116–1132

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the penn state–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resour Res 14(4):601–604

    Article  Google Scholar 

  • Davin EL, Stöckli R, Jaeger EB, Levis S, Seneviratne SI (2011) COSMO-CLM2: a new version of the COSMO-CLM model coupled to the community land model. Clim Dyn 37:1889–1907

    Article  Google Scholar 

  • Dirmeyer PA, Koster RD, Guo Z (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Article  Google Scholar 

  • Gayler S, Wang E, Priesack E, Schaaf T, Maidl FX (2002) Modeling biomass growth, N-Uptake and phenological development of potato crop. Geoderma 105:367–383

    Article  Google Scholar 

  • Gibbard S, Caldeira K, Bala G, Phillips TJ, Wickett M (2005) Climate effects of global land cover change. Geophys Res Lett 32:L23705

    Article  Google Scholar 

  • Grathwohl P, Ruegner H, Wöhling T et al. (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2). doi:10.1007/s12665-013-2281-7

  • Hauck C, Barthlott C, Krauss L, Kalthoff N (2011) Soil moisture variability and its influence on convective precipitation over complex terrain. Q J Royal Meteorol Soc 137:42–56

    Article  Google Scholar 

  • Huang N, Niu Z, Zhan Y, Xu S, Tappert MC, Wu C, Huang W, Gao S, Hou X, Cai D (2012) Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agric For Meteorol 160:80–89

    Article  Google Scholar 

  • Hutson JL, Wagenet RJ (1992) LEACHM: leaching estimation and chemistry model: a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Cornell University. Research Series No. 93–3

  • Ingwersen J, Steffens K, Högy P, Warrach-Sagi K, Zhunusbayeva D, Poltoradnev M, Gäbler R, Wizemann HD, Fangmeier A, Wulfmeyer V, Streck T (2011) Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151(3):345–355

    Article  Google Scholar 

  • Ittersum MKv, Leffelaar PA, Keulen Hv, Kropff MJ, Bastiaans L, Goudriaan J (2003) On approaches and applications of the Wageningen crop models. Eur J Agron 18:201–234

    Article  Google Scholar 

  • Johnsson H, Bergström L, Jansson PE, Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosys Environ 18:333–356

    Article  Google Scholar 

  • Jones CA, Kiniry JR (1986) CERES-Maize, A Simulation Model of Maize Growth and Development. Texas A&M University Press, Texas, p 194

    Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265

    Article  Google Scholar 

  • Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Braakhekke MC, Carvalhais N, Lange H, Le Maire G, Moors E (2010) Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales. J Geophys Res 115(G2):G02003

    Article  Google Scholar 

  • Maxwell RM, Miller NL (2005) Development of a coupled land surface and groundwater model. J Hydrometeorol 6(3):233–247

    Article  Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Q J Royal Meteorol Soc 107:1–27

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nimah MN, Hanks RJ (1973) Model for estimation of soil water, plant, and atmospheric interrelations: i. description and sensitivity. Soil Sci Soc Amer Proc 37:522–527

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M, Xia Y (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. model description and evaluation with local‐scale measurements. J Geophys Res 116(D12109):1–19

    Google Scholar 

  • Oleson KW, Dai Y, Bonan GB, Bosilovich M, Dickinson RE, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu GY, Thornton PE, Vertenstein M, Yang ZL, Zeng X (2004) Technical description of the community land model (CLM), NCAR Tech. Note NCAR/TN-461 + STR, Natl Cent Atmos Res, Boulder, Colo

  • Oleson KW, Niu G-Y, Yang Z-L, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563

    Article  Google Scholar 

  • Overgaard J, Rosbjerg D, Butts MB (2006) Land-surface modelling in hydrological perspective—a review. Biogeosciences 3:229–241

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmospheric Sci 62(7):2078–2097

    Article  Google Scholar 

  • Pause M, Lausch A, Jagdhuber T, Hejnsek I, Denk A (2013) WESS/TERENO EnvSens observations 2011: torward multi-sensor based land surface parameter retrieval at the small catchment scale. Environ Earth Sci 69(2)

  • Priesack E (2006) Expert-N—Dokumentation der Modell-Bibliothek. FAM Bericht 60. Hieronymus, München

    Google Scholar 

  • Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers JA, Granier A, Grünwald T, Guyon D, Havránková K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff J, Montagnani L, Moors E, Nardino M, Ourcival JM, Rambal S, Rannik Ü, Rotenberg E, Sedlak P, Unterhuber G, Vesala T, Yakir D (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoret Appl Climatol 80:121–141

    Article  Google Scholar 

  • Santanello JA, Peters-Lidard CD, Kumar SV, Alonge C, Tao W-K (2009) A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J Hydrometeorol 10:577–599

    Article  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176

    Article  Google Scholar 

  • Schädler G (2007) A comparison of continuous soil moisture simulations using different soil hydraulic parameterizations for a site in Germany. J App Meteorol Climatol 46:1275–1289

    Article  Google Scholar 

  • Simunek J, Huang K, van Genuchten MT (1998) The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0. U.S. Salinity Laboratory, USDA, ARS Techn Report 144

  • Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) The coupling of the common land model (CLM0) to a regional climate model (RegCM). Theoret Appl Climatol 82(3):225–243

    Article  Google Scholar 

  • Stöckli R, Lawrence DM, Niu G-Y, Oleson KW, Thornton PE, Yang Z-L, Bonan GB, Denning AS, Running SW (2008) Use of FLUXNET in the community land model development. J Geophys Res 113:G01025. doi:10.1029/2007JG000562

    Article  Google Scholar 

  • Subin ZM, Riley WJ, Jin J, Christianson DS, Torn MS, Kueppers LM (2011) Ecosystem feedbacks to climate change in California: development, Testing, and analysis using a coupled regional atmosphere and land surface model (WRF3–CLM3.5). Earth Interact 15:1–38

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103(3):279–300

    Article  Google Scholar 

  • Van den Hurk BJJM, Graham LP, Viterbo P (2002) Comparison of land-surface hydrology in regional climate simulations of the Baltic Sea catchment. J Hydrol 255:169–193

    Article  Google Scholar 

  • Wallach D, Goffinet B (1989) Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol Model 44(3–4):299–306

    Article  Google Scholar 

  • Wang E, Engel T (2000) SPASS: a generic process-oriented crop model with versatile windows interfaces. Environ Model Softw 15:179–188

    Article  Google Scholar 

  • Winter JM, Pal JS, Eltahir EAB (2009) Coupling of integrated biosphere simulator to regional climate model version 3. J Climate 22:2743–2757

    Article  Google Scholar 

  • Wolf A (2011) Estimating the potential impact of vegetation on the water cycle requires accurate soil water parameter estimation. Ecol Model 222(15):2595–2605

    Article  Google Scholar 

  • Z-c Li, Z-g Wei, Wang C, Zheng Z-y, Wei H, Liu H (2012) Simulation and improvement of common land model on the bare soil of Loess Plateau underlying surface. Environ Earth Sci 66(4):1091–1097

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Science, Research and Arts of Baden-Württemberg (AZ Zu 33-721.3-2), the Helmholtz Center for Environmental Research, Leipzig (UFZ), and by the German Research Foundation (DFG) in the frame of the integrated research project FOR 1695 “Agricultural Landscapes under Global Climate Change – Processes and Feedbacks on a Regional Scale”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Gayler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayler, S., Ingwersen, J., Priesack, E. et al. Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3.5: comparison with field data and crop model simulations. Environ Earth Sci 69, 415–427 (2013). https://doi.org/10.1007/s12665-013-2309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2309-z

Keywords

Navigation