Skip to main content

Advertisement

Log in

Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was the assessment, at basin scale, of the susceptibility to water-induced soil erosion processes (i.e. gully erosion and sheet/rill erosion) using geomorphological analysis, Geographical Information Systems (GIS) and bivariate statistics. The study was carried out in a watershed located in Southern Italy. A detailed analysis of the pre-existing literature led to select lithology, land-use, slope angle and slope aspect as soil-erosion determining factors (DFs), as they are “non-redundant” and affect both the soil-forming processes that control soil erodibility and the erosive power of running waters. Water-produced erosional landforms, such as gullies and areas severely affected by sheet/rill erosion, were surveyed and mapped using classical techniques of geomorphological analysis. The GIS processing of the geomorphological data allowed calculating the areal density of these landforms in each DF class. Weighting values (W i ), corresponding to the susceptibility level of each DF class, were calculated using bivariate statistics. Finally, GIS overlay procedures of the thematic maps, previously reclassified on the basis of the calculated W i , allowed to produce two Susceptibility Maps (i.e. Gully Erosion and Sheet and/or Rill Erosion Susceptibility Map). The soil-geomorphological coherence of the produced results has been checked and widely discussed in the framework of the pre-existing literature. Both the geomorphological coherence of the calculated W i and the results of the validation procedure suggested a good reliability of the method, which is also relatively easy to apply and update.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acton DF (1965) The relationships of pattern and gradient of slopes to soil type. Can J Soil Sci 45:96–101

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary, review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • APAT—Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici (2005) La realizzazione in Italia del progetto europeo Corine Land Cover 2000. http://www.apat.gov.it

  • Avni Y (2005) Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 63:185–220

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparison of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  • Bazzoffi P (2007) Erosione del suolo e sviluppo rurale—Fondamenti e manualistica per la valutazione agroambientale. Edagricole, Bologna

    Google Scholar 

  • Bergomi C, Manfredini M, Martelli G (1975) Note illustrative della Carta Geologica d’Italia alla scala 1:100.000, Foglio 173 (Benevento). Servizio Geologico d’Italia, Roma

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proc 4th Int Symp on Landslides, vol 1. Canadian Geotechnical Society, Toronto, Canada, pp 307–324

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehabil 13:319–325

    Article  Google Scholar 

  • Bryan RB (2000) Soil erodibility and processes of water erosion on hillslopes. Geomorphology 32:385–415

    Article  Google Scholar 

  • Carrara A, Guzzetti S (1995) Geographical information systems in assessing natural hazards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Carter BJ, Ciolkosz EJ (1991) Slope gradient and aspect effects on soils developed from sandstone in Pennsylvania. Geoderma 49:199–213

    Article  Google Scholar 

  • Carvalho Junior O, Guimarães R, Freitas L, Gomes-Loebmann D, Gomes RA, Martins E, Montgomery DR (2010) Urbanization impacts upon catchment hydrology and gully development using multi-temporal digital elevation data analysis. Earth Surf Proc Landforms 35:611–617

    Google Scholar 

  • Cerdan O, Govers G, Le Bissonais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FJPM, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo MJ, Dostal T (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122:167–177

    Article  Google Scholar 

  • Chen T, Niu R, Li P, Zhang L, Du B (2011) Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environ Earth Sci 63:533–541

    Article  Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56:881–898

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008a) Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Nat Hazards 46:287–305

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008b) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94:325–339

    Article  Google Scholar 

  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63:397–406

    Article  Google Scholar 

  • De Paola P, Diodato N (1999) Condizioni climatiche e paesaggi instabili nell’Area Pluviometrica Omogenea della Valle del Calore beneventano. Geol Tecn Amb 7:33–48

    Google Scholar 

  • Di Nocera S, Torre M, Viti P (1993) Le Arenarie di Caiazzo nell’evoluzione tortoniano-messiniana dell’Appennino Campano. Atti Ticinesi di Scienze della Terra 36:165–182

    Google Scholar 

  • Di Stefano C, Ferro V (2011) Measurements of rill and gully erosion in Sicily. Hydrol Process 25:2221–2227

    Article  Google Scholar 

  • Douglas I, Pietroniro A (2003) Predicting road erosion rates in selectively logged tropical rain forests. In: de Boer D, Froehlich W, Mizuyama T (eds) Erosion Prediction in Ungauged Basins, Integrating Methods and Techniques. Proc of Int Symp Sapporo, Japan, 8–9 July 2003. IAHS Press, Wallingford, UK, pp 199–205

  • Eswaran H, Lal R, Reich PF (2001) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, Penning de Vries FWT, Sherr SJ, Sombatpanit S (eds) Response to Land Degradation. Sc Publ Inc, Enfield, NH, USA, pp 20–35

  • Faulkner H, Alexander R, Teeuw R, Zukowskyj P (2004) Variations of soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation. Earth Surf Proc Land 29(9):1143–1160

    Article  Google Scholar 

  • Figueiredo A, Augustin CHRR, Fabris JD (1999) Mineralogy, size, morphology and porosity of aggregates and their relationship with soil susceptibility to water erosion. Hyp Interact 122:177–184

    Article  Google Scholar 

  • Finney HR, Holowaychuk N, Heddleson MR (1962) The influence of microclimate on the morphology of certain soils of the Allegheny Plateau of Ohio. Soil Sci Soc Am Proc 26:287–292

    Article  Google Scholar 

  • Fox DM, Bryan RB (1999) The relationships of soil loss by interrill erosion to slope gradient. Catena 38:211–222

    Article  Google Scholar 

  • Govers G, Everaert W, Poesen J, Rauws G, De Ploey J, Lautridou JP (1990) A long flume study of the dynamic factors affecting the resistance of a loamy soil to concentrated flow erosion. Earth Surf Proc Land 15:313–328

    Article  Google Scholar 

  • Govers G, Poesen J, Goossens D, Christensen BT (2004) Soil erosion—processes, damages and countermeasures. In: Schjonning P, Elmholt S (eds) Managing Soil Quality, Challenges in Modern Agriculture. CABI Publ, Wallingford, pp 199–217

    Chapter  Google Scholar 

  • Graham RC, Southard AR (1983) Genesis of a Vertisol and an associated Mollisol in northern Utah. Soil Sci Soc Am J 47:552–559

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370

    Article  Google Scholar 

  • Huggett RJ (1975) Soil landscape systems: a model of soil genesis. Geoderma 13:1–22

    Article  Google Scholar 

  • Imeson AC, Vis R (1984) Assessing soil aggregate stability by water-drop impact. Geoderma 34:185–200

    Article  Google Scholar 

  • Janeau JL, Bricquet JP, Planchon O, Valentin C (2003) Soil crusting and infiltration on steep slopes in northern Thailand. Eur J Soil Sci 54(3):543–554

    Article  Google Scholar 

  • Jenny H (1941) Factors of Soil Formation. A System of Quantitative Pedology. McGraw Hill Book Company, New York

    Google Scholar 

  • Johnson DL, Watson-Stegner D (1987) Evolution model of pedogenesis. Soil Sci 143:349–366

    Article  Google Scholar 

  • Kefi M, Yoshino K, Setiawan Y, Zayani K, Boufaroua M (2011) Assessment of the effects of vegetation on soil erosion risk by water: a case study of the Batta watershed in Tunisia. Environ Earth Sci 64:707–719

    Article  Google Scholar 

  • Krishna Bahadur KC (2009) Mapping soil erosion susceptibility using remote sensing and GIS: a case of the Upper Nam Wa Watershed, Nan Province, Thailand. Environ Geol 57:695–705

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  Google Scholar 

  • Le Bissonais Y (1996) Soil characteristics and aggregate stability. In: Agassi M (ed) Soil erosion, conservation and rehabilitation. Marcel Dekker, New York, pp 41–60

    Google Scholar 

  • López-Vicente M, Navas A (2010) Relating soil erosion and sediment yield to geomorphic features and erosion processes at the catchment scale in the Spanish Pre-Pyrenees. Environ Earth Sci 61:143–158

    Article  Google Scholar 

  • Maerker M, Paz Castro C, Pelacani S, Soto Baeuerle MV (2008) Assessment of soil degradation susceptibility in the Chacabuco Province of Central Chile using a morphometry based response units approach. Geogr Fis Din Quat 31:47–53

    Google Scholar 

  • Magliulo P (2005) Quaternary deposits and geomorphological evolution of the Telesina Valley (Southern Apennines). Geogr Fis Din Quat 28:125–146

    Google Scholar 

  • Magliulo P (2010) Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J Maps v2010:435–447 (with attached map). doi:10.4113/jom.2010.1116. www.journalofmaps.com

  • Magliulo P, Russo F, Lo Curzio S (2004) Rapporti tra assetto geomorfologico, caratteri dei suoli e produzione vitivinicola per la definizione preliminare del “terroir” della Valle Telesina (Provincia di Benevento). In: Proc of the Conf “I Paesaggi del Vino”. Perugia, Italy, pp 111–122

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F (2009) Comparison of GIS-based methodologies for the landslide susceptibility assessment. GeoInformatica 13(3):253–265

    Article  Google Scholar 

  • McCool D, Brown L, Foster G, Mutchler C, Meyer L (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans Am Soc Agric Eng 30:1387–1396

    Google Scholar 

  • Melelli L, Taramelli A (2010) Criteria for the elaboration of susceptibility maps for DGSD phenomena in central Italy. Geogr Fis Din Quat 33:179–185

    Google Scholar 

  • Morgan BW (1968) An introduction to Bayesian statistical decision processes. Prentice Hall, New York

    Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell Science Ltd., Oxford, UK

    Google Scholar 

  • Moss AJ (1991) Rain impact soil crust. IV. Packing of sand and silt fractions by raindrops. Aust J Soil Res 29:331–337

    Article  Google Scholar 

  • Nearing MA, Pruski FF, O’Neal MR (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  • Nyssen J, Poesen J, Moeyersons J, Luyten E, Veyret Picot M, Deckers J, Mitiku H, Govers G (2002) Impact of road building on gully erosion risk, a case study from the northern Ethiopian highliands. Earth Surf Proc Land 27(12):1267–1283

    Article  Google Scholar 

  • Nyssen J, Veyret Picot M, Poesen J, Moeyersons J, Mitiku H, Deckers J, Govers G (2004) The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use Manag 20:55–64

    Article  Google Scholar 

  • Oh HJ, Lee S (2011) Cross application used to validate landslide susceptibility maps using a probabilistic model from Korea. Environ Earth Sci 64:395–409

    Article  Google Scholar 

  • Okoba BO, Sterk G (2006) Quantification of visual soil erosion indicators in Gikuuri catchment in the central highlands of Kenya. Geoderma 134:34–47

    Article  Google Scholar 

  • Parker GG (1963) Piping, a geomorphic agent in landform development of the dry-lands. Int Ass Sci Hydr Publ 65:103–113

    Google Scholar 

  • Pike RJ (2000) Geomorphometry—Diversity in quantitative surface analysis. Prog Phys Geogr 24:1–20

    Google Scholar 

  • Prasannakumar V, Shiny R, Geetha N, Vijith H (2011) Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani River watershed in Attappady Valley, Kerala, India. Environ Earth Sci 64:965–972

    Article  Google Scholar 

  • Remondo J, Gonzàlez A, Diaz de Teràn JR, Cendrero A, Fabbri A, Chung CF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Schaetzl R, Anderson S (2005) Soils: genesis and geomorphology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schoeneberger PJ, Wysocki DA, Benham EC, Broderson WD (eds) (2002) Field book for describing and sampling soils, version 2.0. Natural Resources Conservation Service, National Soil Survey Center, US Dept of Agriculture, Lincoln, NE

    Google Scholar 

  • Simonson RW (1978) A multiple-process model of soil genesis. In: Mahaney WC (ed) Quaternary Soils. Geo Abstracts, Norwich, pp 1–25

    Google Scholar 

  • Süzen ML, Doyuran V (2004a) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004b) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Torri D (1996) Slope, aspect and surface storage. In: Agassi M (ed) Soil erosion. Conservation and Rehabilitation, Marcel Dekker, New York, pp 77–106

    Google Scholar 

  • USDA–NRCS (2003) Keys to Soil Taxonomy, ninth edition. Soil Survey Staff, US Dept of Agriculture, National Resources Conservation Service

  • Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. In: ITC publ no 15, Int Inst for Aerospace and Earth Res Surv. Enschede, The Netherlands

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Vreeken WJ (1973) Soil variability in small loess watersheds: clay and organic carbon content. Catena 1:181–196

    Article  Google Scholar 

  • Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65:2–18

    Article  Google Scholar 

  • Wilson G (2009) Understanding soil-pipe flow and its role in ephemeral gully erosion. Hydrol Process 25:2354–2364

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation farming. US Dept of Agriculture, Agriculture Handbook n.537

  • Woo MK, Fang G, Di Cenzo PD (1997) The role of vegetation in the retardation of rill erosion. Catena 29:145–159

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12

    Article  Google Scholar 

  • Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climatic change. Hydrol Process 17:2913–2928

    Article  Google Scholar 

  • Yin KJ, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proc of the 5th Int Symp on Landslides, vol 2. Lausanne, Switzerland, pp 1269–1272

Download references

Acknowledgments

The author wishes to thank Dr. Laura Melelli and an anonymous reviewer for their useful suggestions and comments, which greatly helped to improve the scientific rigour and the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Magliulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magliulo, P. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ Earth Sci 67, 1801–1820 (2012). https://doi.org/10.1007/s12665-012-1634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1634-y

Keywords

Navigation