Skip to main content

Advertisement

Log in

Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this contribution, we introduce a stochastic framework for decision support for optimal planning and operation of water supply in irrigation. This consists of (1) a weather generator for simulating regional impacts of climate change on the basis of IPCC scenarios, (2) a tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply, (3) a mechanistic model for simulating water transport and crop growth in a sound manner, and (4) a kernel density estimator for estimating stochastic productivity, profit, and demand functions by a nonparametric method. As a result of several simulation/optimization runs within the framework, we present stochastic crop-water production functions (SCWPF) for different crops which can be used as a basic tool for assessing the impact of climate variability on the risk for the potential yield for specific crops and specific agricultural areas. A case study for an agricultural area in the Al Batinah region of the Sultanate of Oman is used to illustrate these methodologies. In addition, microeconomic impacts of climate change and the vulnerability of the agro-ecological system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman H, Lepiece A, Macalinga V (1993) Some physical and chemical characteristics of the batinah soils. Commun Soil Sci Plant Anal 24:2293–2305

    Article  Google Scholar 

  • Al-Zidjali T (1996) OMAN:country report to the FAO international technical conference on plant genetic resources. Technical report, FAO

  • Bontemps C, Couture S (2002) Irrigation water demand for the decision maker. Environ Dev Econ 7:643–657

    Article  Google Scholar 

  • Botev Z, Grotowski J, Kroese DP (2010) Kernel density estimation via diffusion. Ann Stat 38:2916–2957 doi:10.1214/10-AOS799

    Article  Google Scholar 

  • Brown PD, Cochrane TA, Krom TD, Painter DJ, Bright JC (2006) Optimal on-farm multicrop irrigation scheduling with limited water supply. In: Zazueta F, Kin J, Ninomiya S, Schiefer G (eds) Computers in agriculture and natural resources. 4th world congress conference, Orlando, USA, 2006

  • Brumbelow K, Georgakakos A (2007a) Determining crop-water production functions using yield-irrigation gradient algorithms. Agric Water Manage 87(2):151–161. doi:10.1016/j.agwat.2006.06.016, ISSN 0378-3774

    Article  Google Scholar 

  • Brumbelow K, Georgakakos A (2007b) Consideration of climate variability and change in agricultural water resources planning. J Water Resour Plan Manage ASCE 133(3):275–285. doi:10.1061/(ASCE)0733-9496(2007)133:3(275), ISSN 0733-9496

    Article  Google Scholar 

  • Carberry PS, Arbrecht DG (1991) Tailoring crop models to the semi-arid tropics. In: Muchow R, Bellamy J (eds) Climatic risk in crop production: models and management in the semi-arid tropics and sub-tropics. Cab International, Wallingford, pp 157–182

    Google Scholar 

  • English M (1990) Deficit irrigation. I: Analytical framework. J Irrig Drain Eng ASCE 116(3):399–412

    Article  Google Scholar 

  • Garcia y Garcia A, Guerra LC, Hoogenboom G (2008) Impact of generated solar radiation on simulated crop growth and yield. Ecol Model 210(3):312–326. doi:10.1016/j.ecolmodel.2007.08.003, ISSN 0304-3800

    Article  Google Scholar 

  • Gonzalez-Camacho JM, Mailhol JC, Ruget F (2008) Local impact of increasing CO2 in the atmosphere on maize crop water productivity in the Drome valley, France. Irrig Drain 57(2):229–243. doi:10.1002/ird.332, ISSN 1531-0353

    Article  Google Scholar 

  • Gorantiwar SD, Smout IK (2003) Allocation of scarce water resources using deficit irrigation in rotational systems. J Irrig Drain Eng ASCE 129(3):155–163

    Article  Google Scholar 

  • Grundmann J, Al Hattaly S, Schmitz G, Schütze N, Walther M (2011) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci. doi:10.1007/s12665-011-1253-z (this issue)

  • Hammer GL, Muchow R (1991) Quantifying climatic risk to sorghum in Australia’s semi-arid tropics and subtropics: model development and simulation. In: Muchow R, Bellamy J (eds) Climatic risk in crop production: models and management in the semi-arid tropics and sub-tropics. Cab International, Wallingford, pp 205–232

    Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Technical report. http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Jones CA, Kiniry JR (1986) Ceres-maize: a simulation model of maize growth and development, technical report. Texas A & M University

  • Jones HG (Nov 2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55(407):2427–2436. doi:10.1093/jxb/erh213. http://dx.doi.org/10.1093/jxb/erh213

  • Kacimov A, Sherif M, Perret A, Al-Mushikhi JS (2009) Control of sea-water intrusion by salt-water pumping: Coast of Oman. Hydrogeol J 17:541–558

    Article  Google Scholar 

  • Kalbacher T, Delfs J, Shao H, Wang W, Walther M, Samaniego A, Schneider, Musolff A, Centler F, Sun Y, Hildebrandt A, Liedl R, Borchardt D, Krebs P, Kolditz O (2011) The IWAS ToolBox: software coupling for an integrated water resources management. Environ Earth Sci. doi:10.1007/s12665-011-1270-y (this issue)

  • Kalbus E, Kalbacher T, Kolditz O, Krüger E, Seegert J, Teutsch G, Borchardt D, Krebs P (2011) IWAS—Integrated Water Resources Management under different hydrological, climatic and socioeconomic conditions. Environ Earth Sci. doi:10.1007/s12665-011-1330-3 (this issue)

  • Keating BA, Wafula BM (1992) Modelling the fully-expanded area of maize leaves. Field Crops Res 29:163–176

    Article  Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3–4):267–288

    Article  Google Scholar 

  • Loganathan G, Elango K (July 2004) Revisiting optimal water-allocation under deficient supply. In: Kumar M, Sekhar M (eds) Assessment and management of water resources, AMWR 2004, Bangalore, India. Department of Civil Engineering, Indian Institute of Science, Bangalore

    Google Scholar 

  • Raghuwanshi NS, Wallender WW (1997) Economic optimization of furrow irrigation. J Irrig Drain Eng ASCE 5:377–385

    Article  Google Scholar 

  • Scheierling SM, Cardon GE, Young RA (1997) Impact of irrigation timing on simulated water crop production functions. Irrig Sci 18(1):23–31. doi:10.1007/s002710050041

    Article  Google Scholar 

  • Schmitz G, Woehling T, de Paly M, Schütze N (2007) GAIN-P: a new strategy to increase furrow irrigation efficiency. Arab J Sci Eng 32(1C):103–114

    Google Scholar 

  • Schütze N, Schmitz GH (2010) OCCASION: a new planning tool for optimal climate change adaption strategies in irrigation. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0000266

  • Schütze N, de Paly M, Shamir U (2011a) Novel simulation-based algorithms for optimal open-loop and closed-loop scheduling of deficit irrigation systems. J Hydroinf. doi:10.2166/hydro.2011.073

  • Schütze N, Grundmann J, Schmitz HG (2011b) Prospects for Integrated Water Resources Management (IWRM) through the application of simulation-based optimization methods illustrated by the example of agricultural coastal arid regions in Oman. Hydrologie und Wasserbewirtschaftung 55(2):52–63

  • Semenov MA (2007) Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric For Meteorol 144(1–2):127–138. doi:10.1016/j.agrformet.2007.02.003, ISSN 0168-1923

    Article  Google Scholar 

  • Semenov MA, Brooks RJ, Barrow EM, Richardson CW (1998) Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10(2):95–107

    Article  Google Scholar 

  • Shang S, Mao X (2006) Application of a simulation based optimization model for winter wheat irrigation scheduling in north china. Agric Water Manage 85(3):314–322

    Article  Google Scholar 

  • Shang S, Li X, Mao X, Lei ZD (2004) Simulation of water dynamics and irrigation scheduling for winter wheat and maize in seasonal frost areas. Agric Water Manage 68(2):117–133

    Article  Google Scholar 

  • Siebert S, Nagieb M, Buerkert A (2007) Climate and irrigation water use of a mountain oasis in northern oman. Agric Water Manage 89(1–2):1–14

    Article  Google Scholar 

  • Sinai G, Dalins BZ, Cohen D, Shamir U (2009) Design of irrigation water supply systems using the Q-C feasibility domain concept: I. Introduction and theory. Irrig Drain 58(1):50–60

    Article  Google Scholar 

  • Singh R, Singh J (1997) Irrigation planning in wheat (Triticum aestivum) under deep water table conditions through simulation modelling. Agric Water Manage 33(1):19–29

    Article  Google Scholar 

  • Soltani A, Hoogenboom G (2007) Assessing crop management options with crop simulation models based on generated weather data. Field Crops Res 103(3):198–207. doi:10.1016/j.fcr.2007.06.003, ISSN 0378-4290

    Article  Google Scholar 

  • Sultanate of Oman (2005) Agricultural census. Technical report, Ministry of Agriculture and Fisheries, Director General of Planning and Investment Promotion, Department of Statistics and Information

  • Tao F, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M (2008) Global warming, rice production, and water use in China: developing a probabilistic assessment. Agric For Meteorol 148(1):94–110 doi:10.1016/j.agrformet.2007.09.012, ISSN 0168-1923

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Federal Ministry for Education and Research (BMBF) in the framework of the project “IWAS—International Water Research Alliance Saxony” (grant 02WM1028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schütze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schütze, N., Kloss, S., Lennartz, F. et al. Optimal planning and operation of irrigation systems under water resource constraints in Oman considering climatic uncertainty. Environ Earth Sci 65, 1511–1521 (2012). https://doi.org/10.1007/s12665-011-1135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1135-4

Keywords

Navigation